
DYNAMIC INTERACTIONS

FOR NETWORK VISUALIZATION AND SIMULATION

THESIS

Çiğdem Yetişti, First Lieutenant, TUAF

AFIT/GE/ENG/09-50

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views expressed in this thesis are those of the author and do not reflect the
official policy or position of the United States Air Force, Department of Defense, or
the United States Government.

AFIT/GE/ENG/09-50

DYNAMIC INTERACTIONS

FOR NETWORK VISUALIZATION AND SIMULATION

THESIS

Presented to the Faculty

Department of Electrical and Computer Engineering

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

In Partial Fulfillment of the Requirements for the

Degree of Master of Science in Electrical Engineering

Çiğdem Yetişti, B.S.E.E.

First Lieutenant, TUAF

March 2009

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

AFIT/GE/ENG/09-50

DYNAMIC INTERACTIONS

FOR NETWORK VISUALIZATION AND SIMULATION

Çiğdem Yetişti, B.S.E.E.

First Lieutenant, TUAF

Approved:

/signed/ 05 Mar 2009

Lt Col Stuart Kurkowski,
PhD(Chairman)

date

/signed/ 05 Mar 2009

Dr. Kenneth M. Hopkinson (Member) date

/signed/ 05 Mar 2009

Capt Ryan W. Thomas, PhD (Member) date

AFIT/GE/ENG/09-50

Abstract

Most network visualization suites do not interact with a simulator, as it exe-

cutes. Nor do they provide an effective user interface that includes multiple visual-

ization functions. The subject of this research is to improve the network visualization

presented in the previous research [5] adding these capabilities to the framework. The

previous network visualization did not have the capability of altering specific visual-

ization characteristics, especially when detailed observations needed to be made for a

small part of a large network. Searching for a network event in this topology might

cause large delays leading to lower quality user interface. In addition to shortfalls in

handling complex network events, [5] did not provide dynamic user interactions since

it did not have real-time interaction with a simulator. These shortfalls motivate the

development of a new network visualization framework design that provides a more

robust user interface, network observation tools and an interaction with the simulator.

Our research presents the design, development and implementation of this new net-

work visualization framework to enhance network scenarios and provide interaction

with NS-2, as it executes. From the interface design perspective, this research presents

a prototype design to ease the implementation process of the framework. The visual-

ization functions such as clustering, filtering, labeling and color coding help accessing

network objects and events, supporting four tabs consisting of buttons, menus, and

sliders. The new network visualization framework design gives the ability to han-

dle the inherent complexity of large networks, allowing the user to interact with the

current display of the framework, alter visualization parameters and control the net-

work through the visualization. In our application, multiple visualizations are linked

to NS-2 to build execution scenarios which let to test clustering, filtering, labeling

functionalities on separate visualization screens, as NS-2 progresses.

iv

Acknowledgements

I’d like to thank to my thesis advisor, Lt Col Stuart H. Kurkowski, for his patience,

advice and help through the project. Also to his wife, for her help and encouragement

for my presentation. I would like to thank Josh Abernathy from Cedarville college

for his contributions towards building the new network visualization framework and

his extensive knowledge of prefuse. I am ever thankful to my family, who supported

me and kept me believing all things were possible. Without your faith in me, I don’t

know if I would have had the strength to complete this process. Lastly, I’d like thank

to my sponsor family for providing a home atmosphere, being my family away from

home and giving me faith when I needed it.

Çiğdem Yetişti

v

Table of Contents
Page

Abstract . iv

Acknowledgements . v

List of Figures . ix

List of Abbreviations . xiii

I. Introduction . 1

II. Interactive Network Visualization and Related Studies 4
2.1 Network Environment 4

2.1.1 NS-2 . 4
2.1.2 Softwares used with NS-2 5
2.1.3 NetViz . 6

2.2 Toolkits Used in the Research 7
2.2.1 Prefuse Visualization Toolkit 7
2.2.2 Mediator Tool 10
2.2.3 Tracegraph Toolkit 11

2.2.4 Nans Toolkit 12
2.3 Network Visualization Studies 13

2.3.1 P2PStudio - Monitoring, Controlling and Visual-
ization Tool for Peer-to-Peer Networks Research 13

2.3.2 Home Centric Visualization of Network Traffic for
Security Administration 16

2.3.3 Vizster Visualizing Online Social Networks . . . 17

2.3.4 Scalable Architecture for Monitoring and Visual-
izing Multicast Statistics 19

2.3.5 Ecological interface design: a new approach for
visualizing network management 22

2.3.6 Hierarchical Visualization of Network Intrusion
Detection Data 25

2.4 Interactivity in Network Visualization 26

2.4.1 Heuristic Evaluation Guideline 27
2.4.2 Network Visualization Functions 28

2.5 Summary . 33

vi

Page

III. The New NetViz Framework Design and Implementation 34

3.1 Prototype Design . 34

3.1.1 Design Specifications 35

3.1.2 Four Task Areas 36
3.1.3 Tabs . 37
3.1.4 Other Features of the Prototype Design 45

3.2 Overview of NS-2 Result Processing 46

3.2.1 NS-2 OTcl File 46
3.2.2 Trace File Format 49
3.2.3 Simulation Visualization and Analysis 50

3.3 Implementation Process 55

3.4 Visualization/Simulator Interaction Using Mediator Tool 57

3.5 Demonstration . 60
3.5.1 Linking Two NetViz Clients to NS-2 60

3.5.2 Distributed Execution Scenario with Six NetViz
Clients . 61

IV. The Test and Validation of the New NetViz Framework Design . 63

4.1 Testing Distinct Features of the New NetViz User Interface 63

4.1.1 Clustering . 65

4.1.2 Filtering . 66

4.1.3 Labeling . 67

4.1.4 Color Coding 70

4.1.5 Selecting and Finding Nodes 72

4.2 Test and Validation of NetViz-NS-2 Interaction 74
4.2.1 Pausing and Resuming the New NetViz 75

4.2.2 Changing the Queue Size 77

4.3 Comparison to NAM and The Old NetViz Framework . 80

4.3.1 Comparison to NAM 81

4.3.2 Comparison to Old Version of NetViz 82

4.4 Test of the Execution Scenarios 85
4.4.1 First Execution Scenario 86
4.4.2 Second Execution Scenario 87

4.5 Challenges in the Design 88

V. Conclusions . 90
5.1 Contributions . 90

5.1.1 User Interface Design 90

5.1.2 Interaction with NS-2 91
5.1.3 Simulation Execution Scenarios Including Multi-

ple Clients . 92

vii

Page

5.2 Research Limits . 92
5.3 Future Work . 93

Bibliography . 94

Index . 1

viii

List of Figures
Figure Page

2.1. Simplified User’s View of NS-2 Environment. 4

2.2. A snapshot of Network Animator NAM. 5

2.3. Nscript application. 6

2.4. A screenshot of NetViz. 7

2.5. Diagram depicting the Information Visualization Reference Model

of the Prefuse toolkit. 8

2.6. Prefuse toolkit with Model, View, and Controller highlighted. . 9

2.7. Prefuse TupleSet Hierarchy. 9

2.8. Prefuse Tuple Hierarchy. 10

2.9. The streaming data and commands between the simulation and

the visualizations. 11

2.10. Graphical user interface of tracegraph 12

2.11. User interface of nans. 13

2.12. Components of Peer-to-Peer Studio showing user interface, server

and Chedar nodes. 14

2.13. Topology view. 15

2.14. Graph view of neighborhood distribution. 15

2.15. VISUAL view. 16

2.16. Screenshot of the Vizster visualization system. 18

2.17. X-ray mode visualizing genders of the users. 19

2.18. (a) Number of Participants (b) Number of MBGP Routes . . . 20

2.19. (a) Loss in MBGP Connectivity (b) Domains that Loss Connec-

tivity . 21

2.20. Affects of Loss in Connectivity 22

2.21. The overview map of 2D image of the topological layout. 23

2.22. Logical view of residence network in VLANs. 23

ix

Figure Page

2.23. (a) The device info panel view (b) Switch diagnosis view in NNM 24

2.24. Network view from NNM. 24

2.25. (a) Hierarchy of computers according to their IP addresses (b)

Illustration of visualization results. 25

2.26. Example of hierarchical data visualization representing leaf nodes. 26

2.27. Heuristic Evaluation Guideline Articles. 27

2.28. Schematic views of a tree: (a) ghosting, (b) hiding, and (c) group-

ing. 29

2.29. A structure induced by hierarchical clustering. 30

3.1. Screenshot of the prototype design. 38

3.2. View Tab. 40

3.3. The prototype design in X-Ray View mode. 41

3.4. View Tab showing the pull-down menu. 43

3.5. The prototype design showing the command tab. 44

3.6. The prototype design showing the statistics tab. 45

3.7. A Simple Tcl script and its topology. 48

3.8. A simple network topology and simulation scenario consisting of

4 nodes. 48

3.9. Flow of events for a NS-2 Tcl file. 50

3.10. Trace file format. 50

3.11. NAM Visualization Packet Events 50

3.12. A snapshot of nans observation tool result. 53

3.13. Nans one way delay versus time and RTT versus time. 53

3.14. Nans throughput versus time and throughput (RTT) versus time. 53

3.15. Tracegraph 3D graph for numbers of dropped and forwarded

packets at all nodes . 54

3.16. Numbers of generated and forwarded packets at all nodes. . . . 54

3.17. Number of received and sent packets at all nodes 54

3.18. Modifications in JSE-joint-topo.tcl file 56

x

Figure Page

3.19. Additional keywords in ns-namsupp.tcl. 57

3.20. Configurable command tool GUI and the configuration file . . . 58

3.21. Mediator GUI. 59

3.22. The illustration of the first execution scenario. 60

3.23. The illustration of the distributed execution scenario. 62

4.1. This framework’s visualization of JSE scenario. 64

4.2. The screenshot of the new NetViz framework. 66

4.3. This framework’s visualization of JSE scenario displaying 3 clus-

ters. 68

4.4. This framework’s visualization of JSE scenario displaying cluster

2. 69

4.5. View tab of the new NetViz user interface. The cursor of “label

font size” slider is dragged to the right to make font size of labels

larger to recognize them clearly. 70

4.6. The “Show labels” check-box on the view tab is deactivated. . 71

4.7. NetViz in “X-Ray” mode visualizing the JSE scenario including

four clusters. 72

4.8. Two NetViz displays on the view tab showing the ways for se-

lecting and finding nodes . 73

4.9. The pull down menus on the command and statistic tab of the

new NetViz user interface . 74

4.10. The new NetViz user interface and command console of NS-2

when pausing and resuming the visualization 76

4.11. The command tab of the new NetViz user interface and command

console of NS-2 when increasing queue size of the nodes. 78

4.12. The command tab of the new NetViz user interface and command

console of NS-2 when decreasing queue size of the nodes. 79

4.13. The command tab of the new NetViz user interface displaying

information regarding tank node. 80

4.14. NAM visualizing JSE wired scenario paused at time 9.06. . . . 82

xi

Figure Page

4.15. The new NetViz framework showing the filters tab on the left

hand side and cluster structures on the right hand side. 83

4.16. The old version of NetViz screenshot visualizing JSE scenario. . 84

4.17. The new version of NetViz screenshot visualizing JSE scenario. 85

4.18. Actual picture of the first execution scenario which is composed

of NS-2, mediator, and two NetViz clients. The parameters on

the filters tab are changed. 86

4.19. Actual picture of the first execution scenario. The parameters

on the view tab are changed. 87

4.20. Actual picture of the second execution system which is composed

of NS-2, the mediator, five NetViz clients. 88

xii

List of Abbreviations
Abbreviation Page

JSE Joint Service Environment 3

NetViz Network Event Visualization 4

NS-2 The Network Simulator 2 4

VINT Virtual Inter Network Test-bed 4

OTcl Object Oriented Tool Command Language 4

NAM The Network Animator 5

Tcl Tool Command Language 5

UAV Unmanned Aerial Vehicle 7

GUI Graphical User Interface 8

MVC Model-View-Controller . 8

nans Network Analyzer for Network Simulator 12

UI The User interface . 14

VISUAL Visual Information Security Utility for Administration Live 16

MBGP Multicast Border Gateway Protocol 20

EID Ecological interface design 22

NNM Network Node Manager 22

VLANs Virtual Local Area Networks 23

JSE Joint Service Environment 49

RTT Round Trip Time . 52

CCT Configurable Command Tool 58

xiii

DYNAMIC INTERACTIONS

FOR NETWORK VISUALIZATION AND SIMULATION

I. Introduction

Today’s network development requires high performance and, functionality along

with tools that can display transmissions and analyze them. To understand the struc-

ture of large networks, network simulators can be used as simulation environments in

order to generate the events for the real-world network scenarios. Network simulators

are relatively fast and inexpensive when compared to the cost and time involved in

setting up an entire testbed containing multiple networked computers, routers and

data links. Running a simulator produces a block of data including keywords or

numbers showing the scenario results. A detailed performance for these results is an

important contribution to the evaluating of the object relationships, data structures,

control flow and data flow. Instead of the raw data, visual representations are highly

desirable to obtain this analysis. The reason is that the visual perception of humans

allows much faster interpretation of structural and geometric information than any

other kind of information [1]. For this reason, network visualization suites are widely

utilized to display network events.

But in some cases, the complexity and scale of the network makes it nearly im-

possible to determine the needed part of the network topology to display on the visual

presentation. Searching for a network event in this topology might cause large delays

leading to lower quality user interface. Multiple network visualization functions can

be used to improve the user interfaces and make the large volume of data compre-

hendible by human users. The subject of this research is building a framework, which

facilitates these visualization functions to assist the investigation of network objects

and events.

1

Simulators can have their visualization capabilities integrated or as additional

software suites. Visualization suites enhance the awareness of operators by providing

goal-oriented user interfaces which support the way operators view their networks and

their network operation activities. Supporting the visual presentation with these user

interfaces including interactive functions gives the ability to dynamically change the

graphical representations and receive response to user inputs.

The simulator utilized in this research, Network Simulator-2 (NS-2) [2], has a

visualization package called Network Animator (NAM) [3, 4], which is discussed in

Chapter II. In the previous study [5], a network visualization (NetViz) was also pro-

duced as a visualization suite which is similar to NAM. NetViz could visualize how

the network performed during a specific scenario using a detailed trace file provided

by NS-2. However, the NetViz framework is only capable of handling simple network

events and has shortfalls in dynamic user interactions. It does not have real-time

interaction with a simulator. This motivates the need for a new NetViz framework

design that provides a more robust user interface, network observation tools and a

real-time interaction with the simulator. Our research presents the design, develop-

ment and implementation of this new NetViz framework design to enhance network

scenarios and provide real-time interaction with NS-2. The new framework design

gives the ability to handle the inherent complexity of large networks, allowing the

user to interact with the current display of the framework on the fly and control the

network through the visualization.

The interface design describes how the software communicates within itself, with

systems that interoperate with it, and with humans who use it. From the interface

design perspective, this research presents a prototype design employing researched

studies discussed in Chapter II and design specifications described in Chapter III.

Before constructing the prototype design, these specifications are developed using

Heuristic Evaluation Guideline [6, 7] defined in Chapter II. The prototype design is

introduced to attempt to better facilitate using multiple network visualization func-

tions meeting user needs described in the design specifications. Providing a route to

2

the development process of the new NetViz framework, this prototype design eases

the implementation process. Each feature of this prototype design is described intro-

ducing possible contributions of these features to the new NetViz framework design.

A brief overview of toolkits, prefuse [8,9], tracegraph [10], Network Analyzer for

Network Simulator NS-2 (nans) [11] and mediator [12] is given in this research. The

new framework design extends the widely used the prefuse visualization toolkit. This

research extends many prefuse classes to customize network visualization and user

preferences providing various dynamic interactions. Using nans and tracegraph, post

processing tools, our research analyzes a simple wired scenario in detail to obtain 2D

and 3D graphs for this network scenario. Usage of these post processing tools provides

a useful foresight which would help the progress of the NetViz framework as examples

graphs to plug into the user interface. These tools serve as guides to developing our

application and future applications of graphs for NetViz. The new framework design

also utilizes the mediator tool [12] which provides a connection between the NetViz

and NS-2 by basically passing data and commands, bringing a kind of dynamism to

the static simulation. The visualization functions [13] in the new NetViz framework

such as clustering, labeling and color coding assist in accessing network objects and

events. These functions support four tabs consisting of buttons, menus, and sliders

which provide control over the network objects for different tasks.

This research tests the new NetViz framework functionality visualizing a com-

plex the Joint Service Environment (JSE) scenario and a simple scenario. This re-

search also builds execution scenarios to test clustering, filtering, labeling function-

alities on separate visualization screens, linking multiple visualizations to NS-2 using

mediator. The visual inspections of the framework are compared to the visualization

outputs of NAM and the old NetViz framework.

3

II. Interactive Network Visualization and Related Studies

The previous research [5] by Captain Belue of USAF designed and developed a network

event visualization (NetViz) framework using an open source visualization toolkit. In

the following section, the network visualization features and components that are

common to our research are overviewed as network environment since the new design

of the framework requires a comprehensive understanding of these items. The other

sections provide descriptions of toolkits used in this research, discussions of related

network visualization studies and interactivity in the network visualization.

2.1 Network Environment

2.1.1 NS-2. The Network Simulator 2 (NS-2) was used as a simulation

environment in order to generate the events for the NetViz [5]. NS-2 is the second

version of a network simulator tool developed by the Virtual Inter Network Test-bed

(VINT) project [2]. It is an event-driven network simulator, which is popular within

the networking research community. NS-2 is an Object Oriented Tool Command

Language (OTcl) [2] script interpreter which has a simulation event scheduler, network

component object libraries and network setup (plumbing) module libraries (shown in

Figure 2.1).

Figure 2.1: Simplified User’s View of NS-2 Environment [2].

A user writes a simulation program in OTcl script language to utilize NS-2

for setting up and running a network simulation. The OTcl script starts an event

scheduler, and sets up the network topology. It also establishes traffic sources and

when to start and stop transmitting packets through the event scheduler [2] .

4

NS-2 includes The Network Animator (NAM), which provides packet-level ani-

mation and protocol-specific graphs for design and debugging of network protocols [2].

When NS-2 executes a network scenario, it produces simulation results in the form of

a trace file, containing network events that occurred during the scenario.

2.1.2 Softwares used with NS-2.

2.1.2.1 NAM. NAM introduces a visual interpretation of the network

events that occurred during the scenario, using the NS-2 trace file [3]. It can be

executed directly from a Tool Command Language (Tcl) script [4]. NAM has a

graphical user interface which has components such as play, fast forward, rewind,

pause, and display speed controller as shown in Figure 2.2. After running scenarios

in NS-2, users can see network events visualized in the NAM window.

Figure 2.2: A snapshot of Network Animator NAM showing packet traffic, queued
packets, and dropped packets and NAM’s graphical interface components [4].

5

For analysis information, NAM can graphically present information such as

throughput and number of packets dropped at each link. It also provides a drag and

drop interface for creating topologies.

2.1.2.2 Nscript. Nscript [14] is a graphical user interface for building

NS-2 Tcl scripts. It is written in Java. The user builds topologies by adding nodes

and links to the screen. The user also can create transport agents i.e. UDP, TCP, user

defined libraries i.e. PING agent and, schedule simulation events i.e. sending/queuing

packets. The scripts can be exported and run in NS-2 (see Figure 2.3).

Figure 2.3: Nscript application showing configuration of two nodes and the link for
the simulation [49].

2.1.3 NetViz. Because of the shortages and shortfalls in the researched

tools identified in [5], a network visualization framework was created as part of that

research. The design, implementation, and testing of the NetViz was done to improve

network visualization of both wired and wireless network events including: traditional

packet animation across wired and wireless links, queue levels at each node, and

dropped packets. Prefuse [8] toolkit was used to create the NetViz framework. Figure

6

2.4 shows a screenshot of NetViz visualizing a scenario for routers, a satellite, a ship

and an Unmanned Aerial Vehicle (UAV) network.

Figure 2.4: A screenshot of NetViz visualizing a scenario for routers, a satellite, a
ship and an UAV communication [5].

Our research develops a new NetViz framework design that provides better tools

for both observing network events and interacting with them. This new design is also

developed utilizing the prefuse toolkit. More information about prefuse visualization

toolkit will be given in the following section.

2.2 Toolkits Used in the Research

2.2.1 Prefuse Visualization Toolkit. Prefuse [8] is an extensible software

framework that provides software developers with the ability to build their own inter-

active information visualization applications. Prefuse is written in the Java program-

7

ming language with the help of Java 2D graphics library [9]. More than providing off

the shelf widgets that serve as buttons or checkboxes in conventional Graphical User

Interface (GUI) tools; prefuse provides a set of building blocks with higher granularity

for constructing customized visualizations.

Prefuse can be utilized while creating separate applications, visual apparatus

embedded in larger applications, and web applets. Comprising a library of design

algorithms, navigation and interaction techniques, prefuse aims to significantly sim-

plify the processes of representing and efficiently handling data, mapping data to

visual representations, and building direct manipulation interaction with the visual-

ized data [8].

The design of the prefuse toolkit is based upon a software architecture pattern

which breaks up the visualization process into a series of separate steps, ranging from

data acquisition and modeling to visual data encoding and presentation of interactive

displays. This software architecture pattern is called the Information Visualization

Reference Model and is depicted in the Figure 2.5.

Figure 2.5: Diagram depicting the Information Visualization Reference Model of the
Prefuse toolkit [15].

The prefuse toolkit is suitable for the Model-View-Controller (MVC) [15] soft-

ware development pattern. The prefuse Action, Render and Display packages consti-

tute the view while prefuse Control and Data Query packages comprise the controller.

In Figure 2.6, a high level block diagram of the prefuse toolkit is presented and MVC

design pattern elements are emphasized. Prefuse classifies data structures into two

main hierarchies: the Tuple and TupleSet interfaces. These two interfaces incorporate

8

Figure 2.6: Prefuse toolkit with Model, View, and Controller
highlighted [9].

collections of data structures shown in Figure 2.7 and all the concrete data structures

shown in Figure 2.8 [5].

Figure 2.7: Prefuse TupleSet Hierarchy [5].

9

Figure 2.8: Prefuse Tuple Hierarchy [5].

Prefuse will allow this research to expand the new NetViz framework by adding

the node, link, and packet interaction functionality to the existing prefuse classes,

without any additional 3rd party application. With the usage of prefuse visualization

toolkit, a more interactive framework design can be achieved which handles the large

computer and communication networks, allowing the user to interact with the current

display of the framework and control the network through the visualization.

2.2.2 Mediator Tool. The mediator tool [12] was the subject of research

conducted by Major John S. Weir, a student at the Air Force Institute of Technology.

The mediator tool, written in the Java programming language, provides a connection

between the simulation and visualization by passing data and commands, in near-real

time.

For the purpose of our research, the mediator tool enables the new network

visualization design with the potential to interact with NS-2, as it executes. In a typ-

ical NS-2 procedure, a Tcl script is written to create network scenarios. Then NS-2 is

performed describing this scenario. Before running NS-2, all the events are scheduled

10

in the Tcl script. To change an event, a user has to wait until NS-2 is done. Then the

user adds desired manipulations to Tcl script and finally reruns NS-2. The mediator

toolkit offers a near clock-time response to user interactions in the network visual-

ization without waiting on the simulator to complete performing analysis. Figure 2.9

shows architecture between the simulation (server) and visualizations (clients).

Figure 2.9: The streaming data and commands between the simulation and the visu-
alizations. One TCP/IP connection is required per visualization, while two connections
are required for the simulation [12].

Using the mediator tool, users will get rid of multiple iterations of a scenario

to modify some features or obtain successful statistics of network events. Passing

data forward and commands backward between NS-2 and the new NetViz design; the

mediator tool will bring a kind of dynamic to the static simulation and eliminate the

need for several iterations of execution.

2.2.3 Tracegraph Toolkit. Tracegraph [10] is a free network trace file analyzer

toolkit designed for use with NS-2 trace processing. Tracegraph operates in Windows,

Linux, UNIX and Mac OS systems. It supports any trace format for NS-2 trace

files such as wired, satellite, wireless. The tracegraph toolkit version 2.05 has 238 2D

graphs and 12 3D graphs. These graphs show delays, processing times, round trip

11

times, throughputs and other statistics about the network. While all the results can

be saved to text files, graphs can also be saved as jpeg and tiff file formats. Any file

that is saved in a text file with two or three columns can be plotted using the tabs.

X, Y, Z axes information of the graphs include most of the common statistical terms

such as minimum, maximum, mean, standard deviation, and median. Tracegraph also

provides script file processing to do the analysis automatically.

Figure 2.10: Graphical user interface of tracegraph showing a selected file to be ana-
lyzed.

Tracegraph is capable of calculating many parameters characterizing network

simulation. It saves calculation results to text files and its own script files and provides

many options for analysis. For the purpose of our research, 3D graphs are used to

achieve a foresight among the multiple analysis options of tracegraph, analyzing a

simple Tcl file in Chapter III.

2.2.4 Nans Toolkit. Network Analyzer for Network Simulator (nans) [11]

toolkit is designed as a network analyzer for use with NS-2 trace processing. It

supports any trace format for NS-2 trace files such as wired, satellite, wireless, and

the new trace format. Similar to tracegraph tool, nans tool helps users of NS-2 in

extracting the required data calculating parameters and thus showing 2D graphs such

12

as sequence number, one way delay, round trip time, throughput versus time. While

all the results can be saved to text files, graphs can also be saved as jpeg and tiff file

formats. Trace files obtained from NS-2 will be applied to the nans tool to do rapid

analysis of the types of 2D graphs needed for the future work.

Figure 2.11: User interface of nans showing a selected file to be analyzed.

Based on the research goals, nans and tracegraph tools provide a useful foresight

in developing the statistics portion of the new NetViz framework design. The different

characteristics of the nans and tracegraph graphs will guide in constructing detailed

network analysis in NetViz for the future work.

2.3 Network Visualization Studies

2.3.1 P2PStudio - Monitoring, Controlling and Visualization Tool for Peer-to-

Peer Networks Research. Peer-to-Peer Studio tool [16] is developed as a monitor-

ing, controlling and visualization tool for peer-to-peer networks. It uses a centralized

13

architecture to gather events from a peer-to-peer network and can be used to visu-

alize network topology and to send different commands to individual peer-to-peer

nodes. The tool is used with Chedar Peer-to-Peer network (see [17] and [18] for more

detail) to study the behavior of different peer-to-peer resource discovery and topol-

ogy management algorithms. The tool is also used for visualizing the results of the

Neuro-Search resource discovery algorithm [19] generated by the Peer-to-Peer Realm

network simulator which was developed to support training of neural networks for

resource discovery problems.

P2PStudio is Java-based and divided into two separate programs as shown in

Figure 2.12: the user interface (UI) and the server. The graphical UI connects to the

server program and uses it to carry out the commands entered by the user. The graph-

ical user interface presents the collected data visually thus making the interpretation

easier compared to reading plain text log files.

Figure 2.12: Components of Peer-to-Peer Studio showing user interface, server and
Chedar nodes [16] .

The server program takes care of all of the communication between the UI and

Chedar nodes. The UI communicates with the server, sends requests to Chedar nodes,

displays data from the server to the user e.g., by visualizing the network topology and

showing diagrams. The UI also allows the management of Chedar nodes. The server

forwards the commands sent by the UI, gathers information from the Chedar network,

and passes on requested data to the UI. Our research will use a similar architecture by

the use of the mediator that exchanges data and commands between the simulation

and visualization.

The user interface draws a logical topology of the monitored network as shown

in Figure 2.13. Another feature of the UI is to show graphs of the monitoring data

14

Figure 2.13: Topology view showing 99 nodes on the visual presentation and mul-
tiple options on the logical tab to control these nodes [16] .

Figure 2.14: Graph view of neighborhood distribution for a selected node [16] .

15

as shown in Figure 2.14. Graphs are formed by combining multiple events into a

single value and are essential in network management and analysis. Plugging the var-

ious graphs such as throughput of generating/sending/receiving/forwarding/dropping

packets or bits versus time and packet ID or send/receive event time versus RTT into

the new NetViz design is a good contribution to our research.

2.3.2 Home Centric Visualization of Network Traffic for Security Administra-

tion. Visual Information Security Utility for Administration Live (VISUAL) [20] is

a network security visualization tool. This tool allows users to see communication pat-

terns between their home (or internal) networks and external hosts. A new computer

security visualization that gives a quick overview of current and recent communica-

tion patterns in the monitored network to the users is designed and tested. While

Figure 2.15: VISUAL view representing each home (internal) host as a small square
within a larger grid that stands for the set of home hosts [20].

many tools can detect and show fan-out and fan-in, VISUAL shows network events

16

graphically, in context. VISUAL provides insight for networks with up to 2,500 home

hosts and 10,000 external hosts, shows the relative activity of hosts, displays them in

a constant relative position, and reveals the ports and protocols used.

The developers of the VISUAL show a home-centric, internal vs. external per-

spective of the network. VISUAL displays a representation of each home (internal)

host as a small square within a larger grid that stands for the set of home hosts (see

Figure 2.15). A user can see which home hosts received connections from a large

number of external hosts (fan-out) and which external hosts communicate with a

large number of internal hosts (fan-in). This study includes a large number of events,

similar to our research features. While it focuses on the network user’s security which

is slightly different than a platform showing the detailed network activities, it does

have ideas for large scale networks.

2.3.3 Vizster Visualizing Online Social Networks. Vizster [21] is a visual-

ization system designed and implemented for playful end-user exploration and navi-

gation of large-scale online social networks using prefuse toolkit. The design builds

upon familiar node-link network layouts to contribute customized techniques. These

techniques provide increased awareness of their online community and helps exploring

connectivity in large graph structures, supporting visual search and analysis, and au-

tomatically identifying and visualizing community structures. Vizster presents social

networks using a familiar node-link representation, where nodes represent members of

the system and links represent the articulated “friendship” links between them (Fig-

ure 2.16). In this view, network members are presented using both their self-provided

name and, if available, a representative photograph or image.

The networks are presented as egocentric networks: networks consisting of an

individual and their immediate friends. Users can expand the display by selecting

nodes to make visible others’ immediate friends as well. As shown in Figure 2.17,

Vizster in X-ray mode visualizes each member’s gender using color coding.

17

Figure 2.16: Screenshot of the Vizster visualization system depicting three intersecting
social networks with the images and names of the users [21].

The Vizster design constitutes a visual environment for the exploration and

analysis of online social networks, including both topological and profile data. The

scale of displayed information and layout were chosen to support observed behavior

and capabilities, and allow users to expand visualized networks while maintaining

landmarks.

In the Vizster design, most of the interactivity features of prefuse such as high-

lighting, panning, zooming, and x-ray mode are utilized and are good examples for our

approach. Since we aim to decrease the complex view of the large networks, filtering,

labeling and color coding will be used which is similar to data mining and highlighting

in their study. Like Vizster, in our research the scale of displayed information will be

determined in accordance with the desired capabilities of the new framework design.

Vizster’s visual exploration of member profile is similar to our aim which is to detail

the displayed node properties. Vizster’s community structure is also parallel to our

proposed clustering architecture.

18

Figure 2.17: X-ray mode visualizing genders of the users. Blue shows males and red
shows females [21].

2.3.4 Scalable Architecture for Monitoring and Visualizing Multicast Statis-

tics. In this paper, Mantra [22], a tool that is developed to monitor multicast

is introduced. Mantra collects, analyzes, and visualizes network-layer (routing and

topology) data about the global multicast infrastructure. The two most important

functions of Mantra are: (1) monitoring multicast networks on a global scale; and (2)

presenting results in the form of intuitive visualizations. Mantra uses several inter-

active visualization mechanisms to present statistics, topology maps, and geographic

properties.

Collected and processed data is used to generate useful views of various aspects

of multicast. They visualize results using several tools: Otter [23], for interactive

topology visualizations; GeoPlot [24], for visualization of the geographic placement

19

of various multicast entities; and MultiChart [22], a tool that is developed to provide

interactive graphing for Mantra.

The developers of Mantra use a set of static as well as interactive visualization

mechanisms for presenting results. Their visualizations present both multicast activ-

ities and detailed analysis of routing problems. Mantra uses five output interfaces for

presentation of results: (1) tables, (2) static graphs, (3) interactive graphs, (4) inter-

active topology maps and (5) interactive geo-graphical representations. Statistics are

presented in the form of customizable graphs. MultiChart provides a user-friendly

interface for controlling different visualization aspects of the graphs, e.g., overlaying

different graphs on the same display, choosing temporal range of data, and scaling

graphs.

A case study of the use of Mantra is presented to detect a routing problem,

discover its cause, and evaluate its effects. The case they present pertains to a Mul-

ticast Border Gateway Protocol (MBGP) [25] routing problem that they noticed on

August 21, 1999 at ORIX, in one of the routers that they collect data from. Figure

2. 18(a) graphs the number of session participants over time. There is an unusual

drop in the number of sources at 1:56am on August 21, 1999. Figure 2.18(b) shows

the distribution of the number of MBGP routes. There is a sharp drop, about 22.2%,

which correlates with the number of participants.

(a) (b)

Figure 2.18: (a) Number of Participants (b) Number of MBGP Routes [22]

20

(a) (b)

Figure 2.19: (a) Loss in MBGP Connectivity (b) Domains that Loss Connectivity
[22]

Figure 2.19(a) shows a screen shot of two consecutive snapshots of the MBGP

topology overlaid on the same display. Links common to both topology snapshots

are in light gray; those seen only in the second snapshot are black. The bar chart in

Figure 2.19(b) shows statistics about the first-order domain of the hosts. Each bar

reflects the number of hosts lost from that domain. Loss in connectivity to a large

number of hosts present in Europe, especially in Germany (domain name suffix ”de”),

Czech Republic (domain name suffix ”cz”) and Greece (domain name suffix ”gr”) is

evident. Figure 2.20(a) shows geographic placement of participant hosts on a world

map before the drop, Figure 2.20(b) displays scenario after the drop.

The usage of different interactive graphing and charting of various statistics

guides our research by means of detailed observation of network events. Their use

of interactive visualization mechanisms is similar to our research objectives. While

they treat the network as a whole to detect general issues such as multicast activities

and to troubleshoot routing problems, our research focuses on similar link status

contingencies, packet activities, node movements and analysis of these network events.

21

(a) Before the loss

(b) After the loss

Figure 2.20: Affects of Loss in Connectivity [22]

2.3.5 Ecological interface design: a new approach for visualizing network man-

agement. Ecological interface design (EID) [26], which is a systematic approach,

drawn from nuclear power plant control, for designing visualizations that uses a multi-

level analysis to develop graphics designed to support problem solving and manage-

ment activities. The developers of EID present an adaptation of this approach to

network management and show how visualization tools can be designed. The EID

tool is evaluated against an industry tool for broadband network management that

is used for large networks to monitor, HPOpenView Network Node Manager(NNM)

a series of detection and diagnosis tasks. As they observed slightly faster detection

times with NNM, the EID tool generated faster diagnosis times and more accurate

diagnoses. The authors of [26] took their tool to professional network managers for a

qualitative evaluation.

They made their overview display a dedicated view in the top left-hand corner of

the display (shown in Figure 2.21). This view presents a 2D image of the topological

layout of all the switches and routers in the network. The left shot in Figure 2.21(a)

22

is that of a relatively healthy network while the one to the right in Figure 2.21(b)

depicts a less healthy one. A trending bar graph is shown in the bottom of the display

to show network performance over time.

(a) A relatively healthy
network

(b) A less healthy net-
work

Figure 2.21: Two close-up shots of the overview map of 2D image of the topological
layout of all the switches and routers in the network [26]

Figure 2.22: Logical view of residence network in Visual Network showing the traffic
levels between and within different VLANs [26].

Figure 2.22 shows the traffic levels between and within different Virtual Local

Area Networks (VLANs). The overview map not only provides displaying purposes,

but also serves as a navigation aid for the main 3D view (Figure 2.22). By positioning

the mouse pointer and selecting a point on the overview map, users can gain access

to the corresponding area of the network.

The display that is shown in Figure 2.23(a) provides some general information

on the currently selected device, such as its name, IP address, device type, and num-

ber of ports. The switch diagnosis view in NNM is shown in Figure 2.23(b) and the

23

(a) (b)

Figure 2.23: (a) The device info panel view (b) Switch diagnosis view in NNM [26]

main network view is shown in Figure 2.24. In summary, the developers of [35] ob-

served faster detection times with NNM, yet faster diagnosis times and more accurate

diagnoses with the EID display.

Figure 2.24: Network view from NNM [26] .

With the usage of multi-level analysis to develop graphics bar and overview map,

[26] has provided a different point of view to the perspectives of our research about

problem solving and management activities. While the new NetViz design should

24

enable users to monitor the overview of network anytime, it also should allow users

to pick any network object for a better observation. For the purpose of our research,

using various visualization functions which provide effective access to network events,

users will have enhanced ability to evaluate the network events’ activities.

As the authors of [26] mentioned, the EID tool is limited in scale and the

particular visualizations used may not scale effectively to a larger network situation.

From this perspective, it doesn’t contribute much to our research. It highlights the

interaction of displays graph information.

2.3.6 Hierarchical Visualization of Network Intrusion Detection Data. The

authors of [27] used a technique for visualizing intrusion-detection system log files

using hierarchical data, based on IP addresses represents the number of incidents

for thousands of computers in one display space. Their technique differs from other

techniques in that they try to maximize the density of the information on display.

The developers of [27] group computers according to their IP addresses to form

hierarchical data initially by the first byte of their IP addresses, then by the second

byte, and finally by the third byte. Consequently, the technique forms four level hier-

archical data, as Figure 2.25(a) shows. It visualizes the computer network’s structure

by representing the hierarchical data as in Figure 2.25(b), where black icons represent

computers and rectangular borders represent groups of computers.

(a) (b)

Figure 2.25: (a) Hierarchy of computers according to their IP addresses (b) Illus-
tration of visualization results of the hierarchical data [27]

25

The developers of [27] represent computers as small clickable icons, letting the

user interface present detail on demand. Their technique applies a hierarchical data

visualization technique (illustrated in Figure 2.26) that represents leaf nodes as black

square icons and branch nodes as rectangular borders enclosing the icons.

Figure 2.26: Example of hierarchical data visualization representing leaf nodes as
black square icons and branch nodes as rectangular borders enclosing the icons [27].

The technique places thousands of leaf nodes into one display space while sat-

isfying the following conditions: (1) it never overlaps the leaf and branch nodes in a

single hierarchy of other nodes. (2) It attempts to minimize the display area require-

ment. (3) It draws all leaf nodes using equally shaped and sized icons. The unique

approach of [27] contributes to our research giving the idea of structure of hierarchical

order which is very significant for the military applications of NetViz.

2.4 Interactivity in Network Visualization

For a network visualization tool, interactivity is generally accepted as the most

important feature by means of its usefulness. Interactivity is mainly defined as the

ability to dynamically change the graphical representations and necessarily respond to

user inputs [28]. “Humans are adapted for interacting with their physical environment

and making continuous use of all their senses” [29]. This research explores network

visualization functions and develops design specifications in Chapter III using the

Heuristic Evaluation Guideline [6] . Design Specifications helped our research to

build a prototype design which guides to the development and implementation process

26

of the new NetViz design. With the usage of visualization functions and interactive

techniques, the new NetViz framework design will allow users to focus on the purposed

area of the network manipulating the current display.

2.4.1 Heuristic Evaluation Guideline. Heuristic evaluation [7] is a list of ten

guidelines used to evaluate a user interface. It is a basic methodology for implementing

the concepts of usability engineering [30] which is a field that is concerned generally

with human-computer interaction and specifically with making human-computer in-

terfaces that have high usability or user friendliness. Heuristic evaluation is one of

four techniques used in usability engineering.

Figure 2.27: Heuristic Evaluation Guideline Articles [7].

The main reason for using heuristic evaluation instead of the entire discount

usability engineering method is the lack of test users during the design process. The

way to find unchanging user needs is examining Heuristic Evaluation Guideline articles

and researched studies from the previous section. Knowing that user needs have the

best priority in the design process, the first seven articles of Heuristic Evaluation

27

Guideline are evaluated by the means of meeting the user needs. The evaluation

of Heuristic Evaluation Guideline mostly affected the way that we developed the

design specifications. The design specifications presented in Chapter III enabled us

to construct the prototype design of the new NetViz framework.

2.4.2 Network Visualization Functions. Being able to trade off among re-

quirements for a particular situation will bring the functionality required in the new

NetViz design. Some of the network visualization functions that help users perceive

and interact network visualization easily are listed below. These functions need to be

considered when designing the new NetViz framework.

2.4.2.1 Node and Edge Selection. For the purpose of our research the

user’s ability to select specific nodes and edges is important for interactivity. The

ability to position nodes in a way that makes the display readable and meaningful is

central to network visualization. Given that such a function exists and the position

of the nodes and edges on the display are known, users can select and re-locate them.

Especially, when the display is too crowded or the panning view is active and the nodes

and edges are removed from the current display, this selecting and repositioning ability

may be important. The new framework design will provide the user with the ability

to control the network by turning the node on and off.

Once a subset of nodes has been selected, a method of representing the un-

selected nodes must be chosen [31]. In the case of clustering, the selected set of

nodes is the set of super-nodes or the groups themselves. According to [32] there are

three possible approaches (see Figure 2.28) (a) ghosting: de-emphasizing nodes, or

relegating nodes to the background (b) hiding: simply not displaying the un-selected

nodes. This is also referred to as folding or eliding (c) grouping: grouping nodes under

a new super-node representation. Our research will use all the approaches mentioned

above in our prototype design. The ghosting approach makes nodes activated or

deactivated changing their color code, etc. The usage of the hiding approach will

bring “turn the nodes on and off” and “turn the labels on and off” capabilities to our

28

Figure 2.28: Schematic views of a tree: (a) ghosting, (b) hiding, and (c) grouping [31].

user interface. The grouping approach will serve to our design to decrease complexity

of large networks, by clustering.

2.4.2.2 Clustering. Reducing the number of visible elements being

viewed yields several advantages [31]. Both the clarity is improved and the perfor-

mance of layout and rendering is increased by limiting the number of visual elements

to be displayed. To reduce the visual complexity of a graph, researchers have applied

various “abstraction” and “reduction” techniques [32]. One approach is to perform

clustering. Clustering is defined as the process of discovering groupings or classes

in data using previously determined semantics. Cluster analysis, grouping, clump-

ing, classification, and unsupervised pattern recognition are among the clustering

techniques referred to in the literature [31]. A mainstream technique is to create

a secondary higher-level graph which includes clusters to navigate within instead of

the original graph. This compound graph represents clusters with glyphs-cognitive

29

symbols that represent common properties of cluster elements and consider them as

super-nodes [31].

A common technique is to represent the clusters with glyphs and treat them as

super-nodes in a higher-level or compound graph, which researchers can now navigate

instead of the original graph [33]. One novel solution is to exclude the edges and

position the nodes indicating their connectivity and thus eliminate the problem of

edge-crossings and reduce visual clutter [34]. This solution eliminates the problem of

edge-crossings and reduces visual clutter. If the same clustering logic is repeatedly

applied to re-cluster the already clustered super-nodes, then this process is defined as

hierarchical clustering [31]. It’s shown in Figure 2.29 where each cluster is represented

as a node in the tree.

Figure 2.29: A structure induced by hierarchical clustering [31].

2.4.2.3 Metric Value. It is important to use the numerical values

associated with the nodes for providing user interactivity. A node metric criterion

can be used to determine an abstract property about any of the nodes for comparison

of the nodes with each other and to achieve a ranking in between [31]. A numeric

computable function may count for such a metric criterion. The bandwidth of the

links between the nodes is a computable numeric value and can be computed using

the trace file. In the current visualization framework, this is shown as follows: Nodes

that have higher bandwidth links in between appear closer on the graph and nodes

that have lower bandwidth links are pulled farther apart. But, in networks including

30

high numbers of nodes, it is beyond the ability of the human eye to detect such a

detail. Metrics can also be used to implement search or filtering, where a certain

threshold is determined and the elements with metric values above this threshold is

emphasized. Clustering can be done by forming groups of elements according to their

metric value.

2.4.2.4 Filtering and Search. Filtering and search are among the

functions that can be carried out utilizing clustering [31]. Both filtering and search

provide optional detailed display and necessary for the user interaction. In visualiza-

tion literature, filtering and search usually mean the opposite of each other. While

filtering usually means excluding an element or group of elements, highlighting of such

elements or groups of elements is meant by search. In both filtering and search the

first step is partitioning the elements into two or more groups, and the second step

is emphasizing or de- emphasizing, one of the groups, according to the case. This

research utilizes filtering for the purpose of amplifying the user’s comprehension by

simplifying the visual complexity of the large networks.

2.4.2.5 Annotation. Annotation on the nodes and edges yields more

meaningful displays and thus amplifies comprehension [13]. The purpose of the visual-

ization determines the proper amount and type of annotation. If the main purpose is

to simply present a logical relationship among the nodes (e.g. during structural data

presentations) then relatively little and simple annotation is required. In some cases,

we only need current relative information, such as “big” and “small” or functional

type. In such cases size, color and/or shape may be effective. Finally, sometimes

quantitative information, such as length, may be required. While annotation is use-

ful, it requires space on the display and thus we trade it off against readability and

scalability.

2.4.2.6 Dynamic Display. Much of the above-mentioned functionality

implies user interactivity and control over the display. This ability to dynamically

31

change the display provides the user with many advantages and decreases the require-

ments of the display software. Moreover, it authorizes the user to examine what is

being displayed, which is principal to visualization. Taking into account the currently

available memory and computing power and the present software libraries which are

able to implement user controls, it is valuable to make a dynamic display and provide

a complete GUI. Anyhow, we may still want to get as much automation as possible.

Consider a user laying out a relatively large network manually. For the best case, it

will be boring and monotonous. For the worst case, it will be beyond most users’

capacity and error prone. Besides dynamically responding to user inputs and thus

enabling user interaction, visualization software may be incorporated with other soft-

ware, such as analysis algorithms. In such cases the output of the analysis might also

be displayed graphically to boost comprehension [13].

2.4.2.7 Zoom and pan. Zoom and pan are conventional visualization

tools, which are essential especially while large graphical structures are being explored.

Using zoom and pan aliasing problems could be prevented. The operation of zooming

is not difficult to realize. In fact, the technical difficulty is rather related to designating

a proper level of detail and a sort of clustering, to sub-graphs [31]. Functional purpose

displays are often sort of overview displays that demonstrate system performance

versus various objectives [13]. An overview of the system state would be handy to be

viewed and let the network manager rapidly identify network failures in any region of

the network. To serve this purpose, the “view category” would include an overview

option on the new user interface of the network visualization.

2.4.2.8 Color Coding. Color is very important aspect in developing

a user interface. “With respect to learning and comprehension, color is superior to

black-and-white in terms of the viewer processing time and emotional reactions, and

there is a difference in a viewer’s ability to interpret information” [35]. Emphasizing

required information in a natural way, color increases comprehensibility and thus

reduces errors of interpretation.

32

2.5 Summary

Discussing related network interface studies, exploring interactive techniques

and examining network visualization functions, this research presents a prototype

design which is described in the next section. To determine interactive techniques,

we evaluated Heuristic Evaluation Guideline which is a basis for design specifications

presented in Chapter III. Many of the techniques and functions presented in this

chapter are used to create the prototype design. The prototype design guides to our

research by means of development and implementation of the new NetViz design.

33

III. The New NetViz Framework Design and

Implementation

This chapter outlines the research methodology used for the development of the

new NetViz framework design, which describes prototype design, an overview of NS-

2 result processing, implementation process, visualization/simulator interaction and

demonstration of two simulation execution scenarios. Utilizing different tools, inter-

active techniques and visualization functions represented in Chapter II, this research

applies some of the ideas that are obtained from researched studies to the prototype

design. Clustering, labeling, color coding and selecting nodes capabilities facilitated in

the prototype design are designed to assist in accessing network objects and events.

These functions support four tabs consisting of buttons, menus, and sliders which

provide control over the network objects for different tasks.

The prototype design is used as a guide for the implementation process of the

new NetViz framework design. The overview of NS-2 result processing introduces

flow of events for a NS-2 Tcl file, including a simple OTcl script which is used to

obtain 2D and 3D graphs from post processing tools, nans and tracegraph. The

implementation section describes object interaction functionality that is added to the

actual classes to expand NetViz framework for the new capabilities. It’s projected

to achieve an interaction between the new NetViz and NS-2 utilizing mediator tool.

Lastly, simulation execution scenarios are demonstrated.

3.1 Prototype Design

Humans can not easily process large volumes of packet traffic at a glance. A

shortage of existing NetViz user interface was the lack of capability of handling large

and complex network scenarios. Using various interactive techniques this research

produced a prototype design of NetViz user interface to make the complex data set

understandable. The primary goal of the prototype design is to explore conventional

intera ction and display methods for optimizing and controlling large network scenar-

ios.

34

In the process of creating the prototype design, the Heuristic Evaluation Guide-

lines [6] helped us to develop design specifications. User needs and interactive func-

tions to meet these needs are described in the specifications. The major purpose of the

prototype design consisting of these interactive functions is to ease the development

and implementation process of the new NetViz framework design. The prototype

design helps to determine the ways to facilitate the complexity of large volume of

network traffic and allows rapid perceiving of the interface components which serve

to an effective NetViz user interaction.

3.1.1 Design Specifications. A set of design specifications were developed

evaluating the first seven articles of Heuristic Evaluation Guidelines discussed in

Chapter II. These specifications include identification of current and future user

needs and the ways to meet these needs with researched interactive functions. Before

constructing the prototype design, the specifications provided a basis for the stan-

dards of interactivity and guided the development process defining visual style of the

user interface. Providing consistency among the several interface components, these

specifications insured the design complied with the principles of human computer

interface [36]. The design specifications are listed and discussed below:

1. Users should be kept informed about the latest status of the network and the

network events as the visualization executes. This can be provided by using

additional pop-ups, windows, tabs, info fields or refresh buttons.

2. Users need to have a control of network objects and events as they occur in a

specific time. A major factor for controlling large networks is to use the time

control to speed up or slow down the time to give the user the ability to manage

the speed of visualization. A few buttons can be included for this purpose.

3. The user interface’s windows and visual view should give the user enough infor-

mation about the network components without overwhelming them with mean-

ingless phrases or unnecessary crowding of objects. Visual perception of users

varies low to high depending on the display or visual representation quality.

35

To make information appear in an understandable way, clustering, labeling and

color coding interactive functions can be used.

4. The design should minimize the user’s memory load by making objects, actions,

and options visible in different ways. The user should not have to remember

information from one part of the dialogue to another. Instructions for use of the

network should be visible or easily retrievable whenever appropriate. Sliders to

change the view size of items, filtering, tradeoffs can be used for this purpose.

The user should be the best decision maker for these functions, having as much

control as possible over the display.

5. Serving multiple purposes of visualization applications, assistance tools may

help the development of the user interface. Even though these tools are not

used in the implementation process, they’re important in terms of providing

foresight into the development of the new NetViz framework design. For the

analysis of a simple network scenario nans and tracegraph tools are used (See

Chapter II).

6. A balance should be built between the user control abilities and workload with-

out overwhelming the user. To give the user the ability to control execution, the

ways to make long processes shorter should be examined. Distributed execution

of the system using server-clients logic on several hosts can be an option. Thus,

the user on the client visualization side can only deal with the user interface

without taking care of controlling the server side.

These specifications are taken as a guide in the prototype design process. They

enabled us to make a number of decisions to form the best prototype. These decisions

and features of the prototype design are discussed in the following sections.

3.1.2 Four Task Areas. Considering large network scenarios, there is a need

for settle on different areas to assign a number of network tasks for the prototype

design. Determination of these tasks related to the observation of the network leads to

an understanding of the user needs which were involved in the design specifications in

36

the previous section. Summarizing briefly these needs, users need to have capability

of controlling, optimizing, changing and analyzing the network. Because dynamic

interactions support both the perception and management ability of the user through

the network, many interactive functions were used to meet these needs in the new

design prototype.

For the purpose of our research, the user needs are consulted to determine four

task areas which are filters, view, command and, statistics. Each task amplifies the

perceptual process enabling the user to have faster cognitive interaction. The four

tasks formed the basis for the prototype design in terms of observation of networks.

3.1.3 Tabs. In the beginning of the design process, there were a few conflicts

about the four task’s exhibition style and position. Widgets for displaying tasks in

separated windows such as pop-ups are compared versus tabs. Knowing that the

network event animation visual representation should be displayed on one part of

the screen to keep users informed, separated windows cause a struggle to maintain a

flawless integrity of the visual presentation. Therefore the separated windows which

cover the screen in an unwanted way are eliminated for the prototype design.

Tabs are selected as an interactive technique, reviewing related studies and

discussing similar visual representations. Allowing stacked windows, tabs offer users

with a panel and network event animation on the same screen and at the same time.

Thus, users are to not only see the network event animation screen on the right hand

side, but also do tasks for a specific object moving between tabs. All tabs are on the

left hand side of the NetViz window and the active tab always is displayed in the

same position (left hand side of the window again). These tabs will be discussed in

the next sections.

3.1.3.1 Filters Tab. When the network is so complex that the un-

derstanding the structure of this network by eyes alone is hopeless, it is a challenge

37

to find and analyze a specific network item. This challenge is eased by using filters

which are shown in Figure 3.1.

Figure 3.1: Screenshot of the prototype design showing filters tab on the left hand
side with in a table format using a tree organization consisting clusters in various colors
and visual presentation of 3 clusters with labels on the right hand side.

The filters tab includes a hierarchical order displays a tree representation of the

hierarchical organization of nodes on the left hand side, filter settings in a table format

on the right hand side, and ”Reset”, ”Labels On/Off”, ”X-Ray View” buttons. The

components of the filters tab are described in the following list:

1. Hierarchical Order. The hierarchical order shows all the military components of

the clusters on the left hand side of the filters tab. Clustering interactive function

is used as a reduction technique as mentioned in the design specifications. For

the case depicted in Figure 3.1, there are different military service departments

such as Air Force headquarters, Navy headquarters, Army headquarters and

each of them has a troop, which are named “Troop1”, “Troop2”, or “Troop3”.

Sub-rows which indicate the other objects are located under these troops. With

38

the usage of annotation network visualization function which is identified as

labeling in the design specifications, these names are displayed next to the image

of each node on the design prototype’s visual presentation. To display the labels

on the screen, a set of modifications are done in the NS-2 files as described in

section 3.4. The aim for doing this is to enhance the user perception overlaying

real world scenario information.

2. Filter Settings. are presented in a table format using a tree organization con-

sisting of clusters in various colors. The semi-transparency in colors allows users

to follow the network objects and events easily. Like clusters, each military de-

partment is given its own color such as green for Army, blue for Air Force, gray

for Navy. As mentioned in Chapter II, color coding function is utilized putting

these colors in the background of the label text.

There are rows which belong to different clusters in the table. The table

can have additional rows depending on how large the network is. The filters tab

has two states, that can be set, “Y” means display the item; “N” means do not

display the item. As shown in Figure 3.1, there are five clusters presented in

the columns. Since the 4th and 5th clusters indicated as “N” for each military

component of these two clusters, there are 3 clusters visible which are yellow,

purple and orange on the display. Each cluster includes nodes such as UAV,

satellite and aircraft carrier. Utilizing the table, users both can depict all the

objects included in clusters or display specific objects selecting them on the

table.

“Army”, “Air Force”, “Navy” are at top of the hierarchy as main rows. The

main row can include additional filter rows which may be either representative

main row or sub-row. These main rows have differing values by displaying the

state as a hyphen (“-”) on the table. When setting a filter entry on a main row,

all rows contained by the main row will be set when the filter entry is changed.

The main rows of the table can be expanded to reveal additional filters that

may be set. The filters tab also includes a “Reset” button. Clicking on this

39

button user can reset all the settings done before and see the “Y” state as a

default value in all the rows.

Figure 3.2: View Tab after the node view size slider has been dragged to the right.

3.1.3.2 View Tab. The view tab provides a variety of options for

changing the look and feel of the network objects, labels and packets. With the usage

of pull-down menu included in this tab, the user can pick any network item from the

list and observe the information of this object. The following is a listing of each of

the areas available in the view tab, with a brief description of what service the area

provides:

1. View Size. Adjustment of the of network item’s view size enables the user

to highlight needed items and reduce the visual complexity. Knowing that

depiction of nodes using images makes users aware of node types and attributes,

a slider bar is facilitated which allows users to make these images bigger or

smaller. The reason for using sliders is to explore various states of the network

40

items for pre-determined values in a semi-automatic way without overwhelming

users as mentioned in the design specification. Restricting the range of possible

values, the slider gives an indication of variable’s value. To change the current

size of the items, the user can click on the bar with the left mouse button and

drag the cursor along the length of the slider. Same type of slider bars are also

facilitated for packet view size and label font size.

In the case depicted in Figure 3.2, node view size slider is dragged to the

right, while there is no adjustment in the other sliders. By doing this all node

view sizes are increased. As shown in Figure 3.2, increasing or decreasing node

view sizes proportionally reduces complexity of the display. Moving the slider to

the far left reverts the display to the initial state of the view of items. Users can

use 3 sliders in different combinations until the visual presentation of network

“look right” to them.

Figure 3.3: A snapshot of prototype design window view filters tab in X-Ray View
mode.

41

2. Pull-Down Menu. For the large networks scenarios, the “find” field may not give

enough ability to explore the network in detail. To type the name of the object

in the “find” field, users need to find this object on the display. The interactive

techniques are researched to provide ease in use. We came up with the usage

of a pull-down menu as an additional exploration tool which includes all the

network objects. Similar to filters tab, all the items appear in a pull-down list

which allows the users access the desired object. The usage of pull-down menu

strengthens our design giving the ability to access the desired object. In the

case depicted in Figure 3.3, once the aircraft carrier 1 is selected from pull-down

menu, the information about it appears below this menu.

3. Information Regarding Network Objects. Figure 3.2 and Figure 3.3 illustrate

the information about the selected item by showing packet receives, drops, and

receive/drop percentages below the pull-down menu. Depending upon which

object the user selects, the field that includes information about this object will

appear in the same area. In addition to selection the item from pull-down menu,

user also can select the item from the picture representation using the filters tab

or zooming, panning facilities.

4. Buttons in the View Tab. The view tab also includes four buttons, which are

“Overview”, “Toggle”, “X-Ray Mode View”, and “Labels On/Off”. “Toggle”

button allows users to change the link status between up and down. If the zoom-

ing and panning are performed, users can display the default view of network

objects clicking on “Overview” button.

When users click on ”X-Ray” mode button, the background of the dis-

play turns black to clearly highlight the label colors which indicate military

departments or clusters. Figure 3.3 shows prototype design in X-Ray mode vi-

sualizing the network events and network objects in 3 cluster’s structure. It’s

easily recognizable the colors that are coded for the forces and clusters.

42

Figure 3.4: View Tab showing the pull-down menu to select network items from
the list.

The “Labels On/Off” button has tradeoff functionality which refers to

hiding method discussed in Chapter 2. Users can make the labels invisible or

visible clicking on this button (See Figure 3.4). This research utilizes tradeoff

buttons for the purpose of amplifying the user’s comprehension by simplifying

the visual complexity of the large networks.

3.1.3.3 Command Tab. The command tab provides a pull down menu

and multiple options for manipulating the network. The pull down menu gives the

ability users to select an object from the list to change the network simulation. Then,

using the sliders below this menu, users can send commands such as change packet

size, queue size, traffic to the simulator. Since the dials have the same logic in the

representation of interactive techniques, they are utilized to perform node speed, node

direction and transmission rate commands (See Figure 3.5). For the purpose of our

research, users will see the effects of changes made to the simulation in near clock

time using these commands.

43

Figure 3.5: A snapshot of prototype design showing the command tab including a
pull-down menu and commands represented as sliders and dials.

3.1.3.4 Statistics Tab. The statistics tab includes two pull-down

menus, the statistics such as send rate, delivery rate, throughput, and the “calcu-

late” button. The reason for facilitating two pull-down menus is to allow users to

analyze network events between two linked nodes. After clicking the “calculate” but-

ton, depending on the statistic desired, one button or two buttons can appear below

the “calculate” button. In the case depicted in Figure 3.6, the throughput option has

only a “graph” button which can provide a throughput graph in a separate window.

The statistics tab can give users information needed to analyze the network

at a higher level than other network visualizations. The statistics can be calculated

using the parameters in the trace file. For example throughput is the rate at which

a network sends receives data. It is rated in terms bits per second (bit/s). To find

the throughput, we divide the packets received into the amount of forwarded packets

over a certain time interval. Thus a good channel capacity of network connections

can be found. Another good example is end-to-end delay which is the time taken for

a packet to be transmitted across a network from source to destination. To find the

end-to-end delay we subtract the packet sent time at source node from the packet

receive time at the destination [37].

44

Figure 3.6: A snapshot of prototype design showing the statistics tab including two
pull-down menus, statistics and a throughput graph in a separated window

3.1.4 Other Features of the Prototype Design.

3.1.4.1 Zooming and Panning. The prototype design describes same

zooming and panning facilities with the existing NetViz framework. The new NetViz

design will also employ a mix of both manual and automated panning and zooming

for navigating the space. Users can use panning by dragging the background of the

display with the left mouse button down. When a new node is expanded, the display

automatically pans, centering on the newly expanded network. Users can use manual-

zooming by holding down the right mouse button moving the mouse up and down

or using two icons on bottom of the right of the window. Simply clicking the right

mouse button causes the display to automatically pan and zoom such that the entire

visualized network fits within the display. The rendering components update to draw

higher resolution photos when zoomed-in to double the normal scale.

3.1.4.2 Find and Location. Find field enables the user to quickly

search a network item from visual presentation typing its name and clicking the “GO”

45

button. Location tool shows selected item’s X and Y coordinates. This information

is included in defined tags -u (x-coordinate velocity), -v (y- coordinate velocity) in

the trace file of NS-2. A field on the panel of the prototype design shows the location

information. This information changes depending on where the user moves the cursor.

3.1.4.3 Control Panel. The control panel has the “start”, “pause” and

“stop” buttons. As mentioned in design specifications, these buttons give users the

ability to control visualization through the simulation. Additionally, the time control

area is presented to speed up or slow down the time to give the user the ability to

manage the speed of visualization. File menu which is on the control panel currently

contains one option, “Open a Trace File”, which is used to manually open a trace file

obtain from NS-2 simulator.

3.1.4.4 Summary Information about a Cluster. The left bottom side of

the windows consists of a panel displaying a selected cluster’s summary information.

This panel includes the cluster’s name, contents, neighbor clusters, and connection

nodes. In the case illustrated in Figure 3.6, the cluster 1 is selected from the pull-

down menu list. Users can see both the network events information on the view tab

and summary information about a cluster on this panel.

3.1.4.5 Simulation status. The right bottom side of the windows

consists of a field displaying the status of the connectivity. This field can show two

statues which are “connected” and “not connected”. Thus, users can be kept informed

about the last status of the network and the network events as the visualization

executes, as discussed in the design specifications.

3.2 Overview of NS-2 Result Processing

3.2.1 NS-2 OTcl File. As mentioned in Chapter 2, NS-2 is an object-

oriented, discrete-event driven network simulator. It is an OTcl interpreter with

network simulation object libraries written in C++ and OTcl. Researchers utilize

46

network simulation scripts in Tcl (Tool Command Language) to create the network

scenarios. Tcl is a scripting language which is used widely on embedded systems. Tcl

scripts should be entered using a standard text editor and saved with the extension

Tcl. An example of Tcl script is shown in Figure 3.7 (a). Since OTcl is Object-

oriented extension of Tcl, the relationship between Tcl and OTcl is similar to C and

C++ and all Tcl commands work on OTcl [38].

3.2.1.1 First OTcl Script for Analysis. A wired network is a network

with physical cables connecting each system together. A simple OTcl script is shown

in Figure 3.7(a) which creates 2 nodes (0, 1) and adds a duplex link which has 2 Mbps

of bandwidth and 10 ms of delay between these two nodes [39]. It also connects the

agents and run the simulation for 5 seconds. The topology of the scenario is depicted

in Figure 3.7(b).

To run this script on a NS-2 installed machine, it’s necessary to open a com-

mand console and type “ns scriptname.tcl” under the directory containing the Tcl

script. Thus, NS-2 runs and we obtain a trace file which is generated according to

the instructions included in the OTcl script.

3.2.1.2 Second OTcl Script for Analysis. Transportation protocols

are TCP, UDP, multicast which are the used in wired networks. Web, ftp, telnet,

CBR, stochastic are the traffic sources used in wired networks. With the usage of

TCP, UDP wired networks, ftp, CBR traffic sources, the OTcl script consisting of 4

nodes (n0, n1, n2, n3) is used to create a simple network configuration and run the

simulation scenario in Figure 3.8.

In this wired network scenario consisting of 4 nodes, the duplex links between

n0 and n2, and n1 and n2 have 2 Mbps of bandwidth and 10 ms of delay. The duplex

link between n2 and n3 has 1.7 Mbps of bandwidth and 20 ms of delay. Each node

uses a DropTail queue, of which the maximum size is 10. A TCP agent is attached to

n0, and a connection is established to a TCP “sink” agent attached to n3. As default,

47

(a) (b)

Figure 3.7: (a) A Simple Tcl script including 2 nodes. (b)The topology of this
script showing two nodes and a duplex links which has 1 Mbps of bandwidth and 10
ms of delay between nodes

Figure 3.8: A simple network topology and simulation scenario consisting of 4 nodes,
the duplex links between n0 and n2, and n1 and n2 have 2 Mbps of bandwidth and 10
ms of delay. The duplex link between n2 and n3 has 1.7 Mbps of bandwidth and 20 ms
of delay [39].

the maximum size of a packet that a TCP agent can generate is 1KByte. A TCP

“sink” agent generates and sends ACK packets to the sender (TCP agent) and frees

48

the received packets. A UDP agent that is attached to n1 is connected to a “null”

agent attached to n3. A “null” agent just frees the packets received. A “ftp” and

a CBR traffic generator are attached to TCP and UDP agents respectively, and the

CBR is configured to generate 1 KByte packets at the rate of 1 Mbps. The CBR is

set to start at 0.1 sec and stop at 4.5 sec, and “ftp” is set to start at 1.0 sec and stop

at 4.0 sec [39].

3.2.1.3 Joint Service Environment Scenario. Joint Service Environ-

ment (JSE) script is written to verify the new NetViz user interface. Since the new

NetViz is capable of handling large networks, the JSE script is produced to meet

demand for multiple network objects and events. For the purpose of our research,

we aimed to generate this scenario including at least three clusters and twenty nodes

during the scripting process. To emphasize the possible impact a network link going

down, the scenario presents a large scale wired environment for monitoring a military

network. Even though the JSE has nodes such as satellite and UAV, we assume that

the JSE is a possible wired scenario consisting of 31 nodes and 4 clusters. As discussed

in the Section 3.3, some modifications have to be done in JSE script file to provide

visualization functions in NetViz. JSE scenario is utilized to illustrate the power of

the new NetViz framework in Chapter IV.

3.2.2 Trace File Format. Figure 3.9 shows the flows of events for a Tcl file

running in NS-2 to create a network scenario. As the simulation runs, trace files are

generated. These trace files capture events occurring in the network and information

which can be used in performance analysis such as the amount of packets transferred

from source to destination, packet loss and, the delay in packets, etc.

As shown in Figure 4.10, in the trace file, each trace line starts with a packet

event (+, -, d, r) descriptor followed by the other simulation events indicated with

numbers. Definitions of NAM visualization packet events are shown in Figure 3.11.

49

Figure 3.9: Flow of events for a NS-2 Tcl file.

Figure 3.10: Trace file format [4].

Figure 3.11: NAM Visualization Packet Events [4].

3.2.3 Simulation Visualization and Analysis. The trace files consists a huge

amount of detail regarding protocol behavior, which are blocks of ASCII data and

50

beyond the comprehending easily by the human brain. Researchers face challenges,

including simultaneously displaying state in this large volume of data in the trace file,

analyzing the scenario results, and characterizing dynamic interactions. Some forms of

post processing techniques are needed to visualize and analyze the simulation results.

As depicted in Figure 3.9, running a script generates a NAM trace file (Out.nam)

and a trace file called “Out.tr”. These trace files can then be inspected using a

visualization or analysis tool Out.nam can be used as an input to NAM or NetViz.

Out.tr can be used with nans [11] or tracegraph [10] for the simulation analysis.

The trace file obtained from this script is used as an input for nans and trace-

graph analyze tools to obtain needed graphs. Thus, it’s expected to investigate ways

to improve statistics tab of the new NetViz framework for the future work. Extract-

ing the data set, nans and tracegraph calculate parameters such as one-way delay,

throughput etc. and gives instantaneous results. The graphs are presented in the

Section 3.3.3.2.

3.2.3.1 Analysis and Interaction Capabilities of NAM and NetViz.

Visualization softwares operate similarly: process trace files generated during NS-2

execution, translate the data, and display the information to a monitor. NAM and

NetViz visualization softwares discussed in Chapter 2 provide packet-level animation.

They have limited analysis capabilities: NAM can graphically present information

such as throughput and number of packets dropped at each link and NetViz provides

node statistics such as packet receives, drops, and receive/drop percentages, when a

user clicks on a desired node. However, additional features are needed to give the

user the ability to perform network performance analysis at a higher level. For this

purpose, the performance parameters that can be obtained through the trace files are

plotted in the form of graphs using two analysis tools, nans and tracegraph in the

following section.

NAM and NetViz have some user interface capabilities in common such as fast-

forward/rewind, pause, jump slider. Other than scenario playback, the only user

51

interaction with NAM is limited to setting up network scenarios. But it doesn’t have

the capability to let the user interact the system while a scenario is running. Similarly,

one drawback of NetViz is being lack of capability of interacting with the simulator.

Under the guidance of the prototype design, it is expected to produce a new

NetViz framework using prefuse toolkit. NetViz is coupled with the mediator tool

to have the capability of rendering the simulation during NS-2 execution. It’s also

expected to strengthen the framework with visualization functions. In short, this

framework has two big differences from NAM and the old version of NetViz. The first

difference is the new NetViz framework provides user interaction with NS-2 using

the mediator tool. Second, the way for data presentation of large network scenarios

using visualization functions discussed in this Chapter. These differences are detailed

in Chapter IV.

3.2.3.2 Analysis of the Simple Wired Network Scenario. The trace

analyzer softwares such as nans and tracegraph meant to ease the task of analyzing

network performance after network simulation on NS-2. Since visualization softwares

provide limited help for analyzing and understanding the data in trace file, nans and

tracegraph can be used as observation tools for the post simulation processes of NS-2

trace files. These tools are capable of calculating many parameters included in the

trace file characterizing network simulation. Obtaining visual displays (graphs) from

these tools, users can understand the large amount of data easily.

Usage of these post processing tools provides a useful foresight which would

help the progress of NetViz framework giving a potential to plug these graphs into

the user interface. Implementation of this new analysis capability changes depending

on prefuse toolkits feasibility.

The graphs give users control and information needed to analyze the network at

a higher level than other network visualizations. A number of performance parameters

can be obtained from the trace file. These parameters can be used to calculate

throughput, end-to-end delay or Round Trip Time (RTT).

52

Figure 3.12: A snapshot of nans observation tool result show-
ing sequence number versus time (0).

(a) (b)

Figure 3.13: (a) Nans 2D graph showing one way delay versus time (b) RTT versus
time

(a) (b)

Figure 3.14: (a) Nans Throughput versus time (b) Throughput (RTT) versus time

53

(a) (b)

Figure 3.15: (a) Tracegraph 3D graph of nodes showing numbers of dropped packets
at all nodes (b) Numbers of forwarded packets at all nodes.

(a) (b)

Figure 3.16: (a) Numbers of generated packets at all nodes (b) Numbers of for-
warded packets at all nodes.

(a) (b)

Figure 3.17: (a) Number of received packets at all nodes (b) Numbers of sent
packets at all nodes.

54

The trace file that obtained from the second OTcl script described in the previ-

ous section is analyzed using nans and tracegraph. Nans is used to obtain 2D graphs

such as Sequence number /throughput/end to end delay versus time. These graphs

are shown in Figures 3.12, 13 and 14. Tracegraph is used to obtain 3D graphs such

as numbers of forwarded/ dropped/received packets shown on source and destination

node sides. Showing different perspectives of these graphs, tracegraph allows us to

detail the observation of network events. These graphs are shown in Figures 3.15,

3.16 and 3.17.

3.3 Implementation Process

This research expanded the network visualization framework for the dynamic

interactions by adding object interaction functionality to the actual classes. The

prefuse polylithic design is able to emanate logic across different classes [9]. The

multiple class approach incorporated in the polylithic design of prefuse is appropri-

ate for the development of the new NetViz framework. Because the polylithic class

hierarchy of data structures enables the implementation of behaviors for the main

visual objects such as nodes, links, and packets on the screen. Adding the node, link,

and packet functionality to the existing prefuse classes does not require additional

implementation.

In our research, an interaction between NetViz and NS-2 is provided using the

mediator tool. The mediator tool provides TCP/IP connection service for NS-2 and

NetViz. The interaction is accomplished by changing the software of both NetViz

and NS-2. [12] produced the mediator tool and provided modified NS-2 code. Our

research adds the StreamingSocketController class to the existing NetViz classes

to connect NetViz to mediator . Additionally, some modifications have to be done in

the NS-2 script files to provide visualization functions.

The prototype design of the user interface presented in the previous section

includes multiple network visualization functions such as clustering, labeling and color

coding. To implement these functions in the new NetViz framework, some of the NS-2

55

script files are modified. The reason for this is that NS-2 does not originally support

some of the properties needed to display such visualization functions as clustering

and color coding. We modify topo.tcl file which is set as a topology file in the Tcl

file of JSE scenario. The node information in this file is enhanced adding new tags

such as label, image, force and cluster for the visualization functions. The second

line in Figure 3.18 (a) is separated into three lines using quotation marks for each

word indicating label, image and cluster (See Figure 3.18 (b)). Then a new line is

added that includes one of the force names such as “army”, “navy”, “air force”. By

repeating this procedure for each node, a new Tcl file obtained.

(a) The original JSE-joint-topo.tcl file (b) Modified JSE-joint-topo.tcl file includ-
ing label, image, force and cluster tags. The
second line of the original file is separated
into 3 lines and then one more line is added

Figure 3.18: Modifications in JSE-joint-topo.tcl file.

Thus, the node information is not received all at once, but is instead received

piece by piece in the new Tcl file. The NodeParser class is changed and made

flexible enough to allow node variable initialization across multiple trace lines and add

support for the image, label, force, cluster tags. After the change, the NodeParser

class is capable of receiving a node’s label in one line and then its cluster a few lines

later.

The modifications in topo.tcl file created a need for change in one of the NS-2

file. A number of NAM keywords are added to ns-namsupp.tcl file to support the

modifications topo.tcl file. The keywords shown in Figure 3.19 are added into ns-

56

namsupp.tcl to facilitate clustering, labeling and color coding on the new NetViz

framework.

Figure 3.19: Additional keywords in ns-namsupp.tcl to facilitate clustering, labeling,
filtering and color coding functions.

We kept most of the classes same such as GroupedLayout which was added to

the existing prefuse classes in [5]. To allow further flexibility in the view, nvReneder-

erFactory is modified to allow the user to customize what data is displayed and how

it is presented. ComplexLabelRenderer is changed to support the modifications

to nvRendererFactory. The ClusterDrawActions, StreamingTraceReader,

StateController classes are also added to the existing prefuse classes.

3.4 Visualization/Simulator Interaction Using Mediator Tool

The mediator tool [12] was produced to establish a communication link with an

external simulator passing new trace information to the visualization parser through

the link. Our research used the mediator tool to give NetViz users the ability to

interact with NS-2 as it executes. For the purpose of our research, NetViz is inte-

57

grated with the mediator and modified NS-2 code to establish a complete simulation

execution with rendering the visualization and providing command feedback.

As described in the previous section, the new NetViz framework does not use

static data unlike NAM and the old version of Netviz. The reason is that the

visualization-simulation interaction could be established streaming data from a run-

ning the Tcl file on NS-2 code. Thus, data is added and modified dynamically as the

trace file is streamed and scenario changed.

To run the new NetViz framework integrated with the mediator and modified

NS-2 code, we first run the mediator tool. Then we set Configurable Command Tool

(CCT) [12] which requires an ip address and port number of the mediator computer

(see Figure 3.20(a)). After setting the CCT for the local computer these steps are

followed: (1) Run NetViz screen streaming (2) Run the Tcl file on the modified NS-2

(3) Click on “Start” button on the NetViz user interface.

(a) Configurable command tool GUI depicting
status, commands, data, and console panels.
The Connection indicator turns green when a
connection is established with the mediator by
pushing the Connect button.

(b) The configuration file including the
needed commands.

Figure 3.20: Configurable command tool GUI and the configuration file.

Figure 3.21 shows the mediator GUI that we see when we first start this tool.

Running Tcl file on the modified NS-2 requires to run “./ns scenarioName.tcl” on

the command console. Clicking on “Start” button on the NetViz user interface will

start the visualization. Thus, users will have the ability to pause and resume the

58

visualization any time dynamically interacting with NS-2. There is an offset time to

make sure NS-2 stays ahead of NetViz. NetViz has to be a little behind from NS-2,

because sending data to NetViz takes time. There is a configuration file including

offset time information which is set as 1.1 second. This file can be changed depending

on the system needs.

Figure 3.21: Mediator GUI depicting status, data commands an console panel. The
four indicators turn green when connection or information is available [12].

Currently, the only command that works on the command tab is changing

“queue size”. The command tab functionality for other commands is proceeding

to provide direct manipulation of the scenario. Other than command tab, the addi-

tional panel, CCT, including commands such as “turn ON/OFF cbr” and “change

the interval” can be used to provide the direct manipulation of simulation. At the

time this research was written, CCT panel has been successfully coupled with the

NetViz and now has the ability to manipulate the scenario. The command buttons

on the CCT panel are configurable by a configuration file including needed command

words as shown in Figure 3.20(b).

59

3.5 Demonstration

Providing TCP/IP connection service for NS-2 and NetViz clients, the mediator

allows multiple visualizations to connect to NS-2. Taking advantages of the interaction

capability of the new NetViz, a simulation execution scenario can be built integrating

NetViz clients with a mediator, and a modified NS-2 code. In the following sections,

first we demonstrate two NetViz clients linked to NS-2. Then, we purpose to increase

numbers of clients to six adding four more clients to ensure that the scenario works

on the different operating systems too. Our main goal is to demonstrate that the

display of each NetViz client can be customized differently by the users.

3.5.1 Linking Two NetViz Clients to NS-2. In Figure 3.22, a simulation

execution scenario is demonstrated integrating two NetViz clients with the mediator

running on windows machines, and the modified NS-2 code running on linux machine.

Before running this application, the mediator computer must be configured in the

topology file of NS-2. The CCT also must be set for each NetViz client typing required

ip address and port number of the mediator computer. In this scenario, the order of

running programs as following: (1) Run the mediator, (2) Run the CCT script for

each computer (typing the ip address and port number of the mediator computer),

(3) Run NetViz screen streaming (4) Run NS-2 (5) Click on “Start” button on the

NetViz user interface.

Figure 3.22: An illustration of the execution scenario which is composed of NS-2
running on linux operating system, the mediator, and two NetViz clients running on
windows operating system.

60

The interaction between the elements of this execution scenario can be accom-

plished making needed changes described in Section 3.3. The mediator tool provides

TCP/IP connection service for NS-2 and NetViz. Thus, it allows the NetViz comput-

ers to stream data from NS-2 connecting to it. In the case depicted in Figure 3.22, the

flow of events between NS-2 (server) and NetViz computers (clients) are shown. The

center of the application is the mediator collecting commands from each connected

NetViz and passing them to NS-2. Then it receives data from NS-2 and duplicates it

for each NetViz client. This will allow multiple clients to see the same simulation at

the same time and make their own customizations on the display.

3.5.2 Distributed Execution Scenario with Six NetViz Clients. A distributed

execution scenario can be obtained adding the previous scenario four more NetViz

clients. The mediator runs on one of the NetViz computer. The CCT can be set for

each computer typing ip address and port number of the mediator computer. Thus,

the distributed system can be run following the same order of running programs

defined in the previous section. Figure 3.23 shows the illustration of the execution

scenario which is composed of NS-2 running on linux operating system, the mediator

and five NetViz clients running on windows operating system and a NetViz client

running on Mac operating system.

Needed changes described in Section 3.3 should be done before the execution

starts. It’s expected to accomplish the interaction between the elements of the scenario

to prove that multiple NetViz clients running on different operating systems can be

linked to NS-2. Thus users of each NetViz client can change visualization parameters

differently on the screen. In the application depicted in Figure 3.23, one of the NetViz

clients and the mediator are run on the same windows computer. The mediator

collects commands from each connected Netviz clients and passes them to NS-2. Then

it receives data from NS-2 and multiplies it for six NetViz clients. Each NetViz client

can see the same simulation and use different visualization parameters on the user

interface.

61

Figure 3.23: An illustration of the execution scenario which is composed of NS-2
running on linux operating system, the mediator, five NetViz clients running on windows
operating system and one NetViz client running on Mac operating system.

62

IV. The Test and Validation of the New NetViz Framework

Design

This research designed and implemented a new NetViz framework with dynamic in-

teractions for observing network events in large-scale network scenarios using the

prefuse toolkit. Before constructing the new NetViz framework, a prototype design

was needed to determine a route for implementing interactive techniques and the

insight obtained from researched studies. Under guidance of this prototype design,

our research produced the framework with the capability of meeting user needs as

mentioned in design specifications described in Chapter III. The design builds upon

same node-link network layout and the parser architecture defined in [5] to contribute

customized network visualization functions. The visualization functions such as clus-

tering, labeling, filtering and color coding assist in accessing network objects and

events. These functions support four tabs consisting of buttons, menus, and sliders

which provide control over the network objects for different tasks. The final frame-

work design has tolerable differences from the prototype design because of the limits

of NS-2 and the Java library. These differences are discussed while describing the

distinct features of the user interface in the following section.

This research also tested a number of visualization scenarios by visual inspection.

The main scenario detailed in this research is the JSE scenario because it presents

a large network topology. JSE scenario is visualized for testing distinct features of

the new NetViz framework. In addition to JSE scenario, a simple wired scenario

is visualized to verify the interaction between the new NetViz and NS-2. The JSE

scenario is visualized in both NAM and the old version of NetViz framework comparing

the resultant visualizations with the same scenario visualized by the new version of

the NetViz framework.

4.1 Testing Distinct Features of the New NetViz User Interface

The framework empowers the visualization with wide variety of new and en-

hanced features including clustering, filtering, labeling, selecting nodes and color cod-

63

ing. These new features are complemented by adding effective interactive techniques

to the user interface giving users the ability to reduce the complexity of networks.

Users can focus on desired areas of the large networks or change the views of objects

by utilizing multiple options provided by the comprehensive user interface. This sec-

tion establishes dynamic interactions accurately by visualizing JSE scenario for each

feature of this user interface. The features of the user interface are described in terms

of their purposes and the differences from the prototype design. Figure 3.1 shows

visualization functions discussed in Chapter III assist in accessing network objects

and events, supporting four tabs (filters, view, command and statistics) consisting of

buttons, menus, and sliders. A closer view is shown in Figure 3.1. All the design

steps in the prototype design could not be implemented because of the limits of NS-2

and the Java library as discussed in Chapter V.

Figure 4.1: This framework’s visualization of JSE scenario displaying four clusters
which include multiple nodes.

64

4.1.1 Clustering. This research investigates the use of clustering algorithms

as a solution for improving the efficiency of large network scenarios. Clustering is

aimed to accomplish filtering function in the prototype design described in Chapter

III. The prototype design shows the semi-transparency for three clusters depicted in

Figure 3.1. The reason for designing semi-transparency was to enable users to identify

the images and labels of nodes indicating clusters in transparent colors. Thus, the

users would concentrate on a particular network object and apply the filter table

settings for the other members of the cluster (See figure 3.1). But the Java swing

library limited the implementation of the filters table to the framework as discussed

in the next section. However, different settings for filtering which serve to the same

purpose and the semi-transparency are implemented to the new NetViz framework

supporting the assignment of nodes to multiple clusters.

As shown in Figure 4.1, clusters are built to identify group structures based on

the linkage of nodes in the network. Users should be able to view the communication

behavior of these nodes as mentioned in section 3.1.1. For this reason, the clustering

is used to ensure useful topology based groupings fast enough to support real-time

interaction which is provided utilizing the mediator tool in our research.

In our application, the algorithm of clustering first presents each node in its

own cluster, and then it minimizes the cluster’s borders as users set the filters (See

Figure 4.4). The tree view on the filters tab (left hand side of the screen) is used

for this purpose. A closer view of the tree view is shown in Figure 4.2. Clicking on

the “Objects” folder, users can obtain this tree view and see all the components to

determine which item would be removed from the clusters.

In Figure 4.1, the left bottom side of the window consists of a panel displaying

a selected cluster’s summary information just like designed in Chapter III. The panel

includes the cluster’s name, contents, neighbor clusters, and connection nodes. This

provides an insight about the selected cluster by means of purposed task.

65

Another unique property of the clustering algorithm is to give the users the

ability to customize the cluster colors. As shown in Figure 4.2, with the click of

“Change Color” button on the filters tab, a separated window showing various colors

appears. This window lets users customize the network environment choosing a variety

of transparent colors for the clusters.

Figure 4.2: The screenshot of the new NetViz framework showing filters tab and
“group color” panel which enables users to customize the colors of the clusters.

4.1.2 Filtering. Filtering data allows the user the ability to limit which data

are displayed on the visual presentation. In the prototype design, the rows of filter

settings table were planned to refer to clusters, which has two states, “Y” or “N” (See

Section 3.1.3.1). The specific objective was to keep informed users allowing them to

set the visibility of network objects displayed on a filter settings table. Because the

66

Java swing tables are not flexible enough to implement filters settings table, we could

not implement this table, as mentioned in Chapter V. Instead of filter settings table

a small visibility check-box is used to set the network objects invisible or visible on

the right hand side of the filters tab. The hierarchical order display described in the

prototype design could not be implemented either.

In our application, the clustering network visualization function is used to ac-

complish filtering function. The clusters consisting of nodes are organized in the tree

structure. The tree view can be expanded or collapsed by clicking on the cluster fold-

ers. In the tree representation of the clusters, to remove a cluster or node from the

display, users can click on the desired item and then deactivate the visible check-box.

As shown in Figure 4.3 and 4.4, other than the hierarchical relations of nodes,

NetViz filters tab shows a tree representation of the clusters consisting of nodes on

the left hand side. By deactivating the visible check-box after clicking on the “Cluster

3” on the tree view, the “Cluster 3” is removed from the display of Figure 4.3. Thus,

all the objects included in the “Cluster 3” are made invisible but links.

In the same way, the “Frigate” node is removed from the display of Figure 4.4.

Removing this node from the display changes the visible cluster structure reducing

the borders of the cluster 2. By activating the visible check-box after clicking on the

“Frigate” node, users can revert the display to the initial state of the clustering.

Removing the “Cluster 3” and the “Frigate” from the Figure 4.3 and 4.4 displays

caused these items to be desaturated in the tree view, reverting names of them to

grayscale. This provides awareness on the tree view letting users know which item

is removed. Circles on both figures indicate the names in gray and the location of

removed items. Thus, configuring the visual representation by the filters tab, the

complexity of the display can be reduced in the direction of user needs.

4.1.3 Labeling. Knowing that the use of imagery is not enough to establish

a logical relationship among nodes, the names of military components are displayed

on the prototype design screen in Chapter III for ease of interpretation. The goal was

67

Figure 4.3: This framework’s visualization of JSE scenario displaying 3 clusters. By
clicking on “Cluster 3” on the tree view of filters tab and deactivating the visible check-
box, “Cluster 3” is removed from the display.

basically to enable users to identify nodes using labeling function in the design. In

our application, the labeling function is also used as a basis for the functionality of

filtering, color coding, find field and selecting node. Establishing labeling function is

needed to accomplish these functions. These functions described as distinct features

of the new NetViz framework in this chapter.

To implement the labeling function, the compatibility of the prefuse classes

with NS-2 is examined in Chapter III. Adding a number of names and keywords into

the some of the NS-2 files, labeling is facilitated in the new NetViz framework as

described in Section 3.3. Even though military components are commonly referred by

various names in real world scenario information, general names are added into the

68

Figure 4.4: This framework’s visualization of JSE scenario displaying cluster 2. Circles
indicate that “Frigate” node is removed from the display by clicking on this node on the
tree view and deactivating the visible check-box on filters tab. Removing this node from
the display changes the visible cluster structure reducing the borders of the cluster 2.

NS-2 topology file for the JSE scenario. In the Figure 4.4, the visible cluster structure

of “Cluster 2” is changed removing “Frigate” image and label from the display.

Various configurations can be composed using the three sliders on the view tab

as designed in Chapter III. Figure 4.5 shows some components of cluster 1 and 3. The

cursor of “label font size” slider is dragged to the right. Thus, labels grow slightly

larger to increase awareness of the names of nodes and color of the force sides.

“Labels ON/OFF” was designed in Chapter III to decrease of complexity. This

trade off refers to “show labels” check-box on the view tab of the new NetViz. Circle

in Figure 4.6 indicates this check-box which is deactivated to remove all labels from

the display. “Show labels” check-box can be used when “Zoom in” performed by users

69

Figure 4.5: View tab of the new NetViz user interface. The cursor of “label font size”
slider is dragged to the right to make font size of labels larger to recognize them clearly.
Zooming and panning performed to display a part of cluster 1 and 3.

to concentrate on a specified area of the network. While this will dilute the display,

it might break the logical completeness of the network. Same view can be obtained

by dragging the cursor of “label view size” slider to the left.

4.1.4 Color Coding. This research used color to encode both topological and

non-topological properties of the forces and the clusters. A color-coded filter settings

table was described in the prototype design in Chapter III. The hierarchical order

next to this table was also color-coded to indicate the forces. The Java swing library

limited us implementing the filter settings table and the hierarchical order. In our

application, the tree view shown on the left side of the Figure 4.4 is produced, which

70

Figure 4.6: The “Show labels” check box on the view tab is deactivated to remove all
the labels from the screen.

is not color-coded. However, colors of clusters and force labels are implemented to

the new NetViz display.

As shown in Figure 4.2, the color customization panel provides a color scheme

to specify the cluster colors on the display. For the colors of force labels, force names

and keywords are added into the some of NS-2 files discussed in Section 3.4. Each

force is given its own color such as green for Army, blue for Air Force, gray for Navy.

These colors are used in the background of the labels texts in rectangular shapes.

Additionally, “X-Ray” mode button can be used to turn the background of

the display black. Thus, the label background colors look highlighted to indicate the

forces on the display. Figure 4.7 shows NetViz in “X-Ray” mode visualizing the nodes

71

included in four clusters. Emphasizing the force colors, this mode increases the visual

perception of human.

Figure 4.7: NetViz in “X-Ray” mode visualizing the JSE scenario including four
clusters. “X-Ray” mode button is used to turn the background of the display black.
Thus, the label background colors look highlighted to indicate the colors of forces on the
display.

When the zooming and panning are performed, users can display the default

view of network objects clicking on “Overview” button. “Toggle layout” button and

information regarding nodes are common features with the old version of NetViz and

discussed in Section 4.3.

4.1.5 Selecting and Finding Nodes. In the prototype design, a number of

techniques were determined to ease the complexity of the network. The “find” field

was an exploration tool which is a common feature with the old version of NetViz.

72

But in some cases it is desirable to see all the components of the network in a list

format. For this reason, a hierarchical order and pull-down menus were included in

the prototype design. Instead of the hierarchical order, the new NetViz framework has

the view tree on the filters tab which enables users to remove items from the display

to reduce visual complexity. On the other hand, the pull-down menus are facilitated

to let users to select the desired node from the list for the purposed tasks. Except

filters tab each tab of NetViz has pull-down menu or menus. In the case depicted

in Figure 4.8 (a), a circle indicates “AWACS” node which is selected from the list

of the pull-down menu for the observation. After clicking on the desired node, the

information about this node is appeared below the pull-down menu.

The find field supports keyword search for the visualized objects. As users start

to type the desired node name, the name and the node will grow clearly larger if

there are at least 2 matching letters. A circle in Figure 4.8 (b) shows that a user

types “AWACS” node which grows larger on the display to highlight the visibility.

This amplifies cognition and allows users to search and observe particular nodes in

large networks.

(a) The pull-down menu on the view tab. A
circle indicates that “AWACS” node is se-
lected from the list of the pull-down menu for
the observation.

(b) The “find” field on the NetViz user in-
terface. A circle shows that a user types
“AWACS” node which grows larger on the dis-
play

Figure 4.8: Two NetViz displays on the view tab showing the ways for selecting
and finding nodes.

73

The pull-down menus included in the command tab are shown in Figure 4.9

(a). In this case, these menus are used for accessing nodes to change specific features

of them interacting with NS-2. Even though the functionality of the statistics tab is

proceeding, the pull-down menus are facilitated on this tab (See Figure 4.9 (b)). When

the statistics tab functionality is completed, users will be able to analyze particular

node activities selecting these nodes from the pull-down menu list.

(a) Two pull-down menus on the command
tab. A circle indicates two nodes which are se-
lected from the lists of these menus to change
specific features of the nodes interacting with
NS-2

(b) Two pull-down menus on the statistics
tab. A circle indicates two nodes which are
selected from the lists of these menus, even
though the functionality of this tab is done
yet

Figure 4.9: The pull down menus on the command and statistic tab of the new
NetViz user interface.

To accomplish the “find” field and selecting nodes the labeling function is estab-

lished as mentioned in section 4.1.3. In the old NetViz framework, the task of “find”

field was to search flow id numbers since the labeling function didn’t exist. Usage of

selecting nodes and “find” field strengthens our design giving the ability to access the

desired object.

4.2 Test and Validation of NetViz-NS-2 Interaction

Our research used the mediator tool to build a real-time interaction between

the new NetViz and modified NS-2. The interaction is established by enhancing the

NetViz classes and modifying some of the NS-2 script files as described in Section 3.3.

74

Passing data forth and commands back between NS-2 and the new NetViz framework,

the mediator tool gives users the ability to interact with NS-2, as it executes.

Since the new NetViz doesn’t use the trace file data at start up, the data is

needed to be streamed from NS-2 Tcl Script. The mediator receives this data from

the modified NS-2 as it executes. When a user gives a command, NetViz passes the

command through the mediator to the modified NS-2 and streams the data after 1.1

seconds which is an off-set time. Currently, “pause”, “start” and “change the queue

size” commands are implemented in the new NetViz. The commands are tested and

validated visualizing the JSE wired scenario and a simple scenario in the following

sections. The two sections illustrate the interaction capability of NetViz showing

wired topologies, as NS-2 progresses.

4.2.1 Pausing and Resuming the New NetViz. Providing the real-time in-

teraction with modified NS-2, the mediator tool brings the capability of pausing and

resuming the new NetViz any time during the modified NS-2 execution. User interface

of the new NetViz has controls for starting, pausing and stopping the visualization.

It also provides speed control in the visualization. At the top are the control panel;

the lower left side two buttons (+, -) holds the time control.The circles on visualized

JSE wired scenario indicate these areas in Figure 4.10 (a).

The method of starting the new NetViz, including running the mediator and

CCT programs, is shown in Section 3.4 and 3.5. After starting the new NetViz, it can

be paused, resumed or completely stopped by user action. Clicking on the “pause”

button on the user interface, users pauses the scenario flow at a certain time. At

that time, modified NS-2 freezes the scenario execution as well. Figure 4.10 (a) shows

the new NetViz user interface when NetViz is paused at time 3.04075 sec. As the

user click on the “start” button to resume the visualization paused at this time, the

command console shows the response in the Figure 4.10 (b). It shows 4.1002 sec

which is the time that modified NS-2 pauses the simulation. The offset delay ensures

NS-2 execution stays ahead of the visualization. For example 1.1 sec is the time

75

(a) The screenshot of the new NetViz user interface paused at time 3.04075

(b) Command console showing the NS-2 re-
sponse when clicked on start button at time
3.04075. NS- 2 pauses the execution at 4.1002

(c) NS-2 continues to normal execution.

Figure 4.10: Snapshots of the new NetViz user interface and command console of
NS-2 when pausing and resuming the visualization.

difference that is set in the NetViz configuration file as offset time. Then modified

76

NS-2 continues to normal execution as shown in Figure 4.10 (c). Users can stop the

visualization simply by closing the application window.

4.2.2 Changing the Queue Size. The command tab of the prototype design

is planned to have multiple commands in Chapter III. Currently, the only command

on the command tab that can be received and processed by the modified NS-2 is

“change queue size”. Coupling the additional panel, CCT, with the new NetViz, [12]

run a set of additional commands successfully. These commands are discussed for the

future work in Chapter V.

The command tab functionality for “change queue size” command is tested

visualizing JSE scenario (Shown in Figure 4.11 and 4.12). These figures illustrate

a possible real-world scenario for monitoring a military network including AWACS,

Tanker, UAV and Tank nodes. Figure 4.11 (a) shows the initial network with two links

up and queue size of UAV is zero. In this case, UAV communicates with AWACS and

Tanker via receiving packets. Since the queue size is zero, there is no communication

between UAV and Tanker and thus, all the packets drop. As shown in Figure 4.11(b),

after selecting UAV and Tank nodes from pull-down menus lists, the cursor of “queue

slider” is dragged to the right to increase queue size from zero to 5000. This command

is given at time 0.17612. Figure 4.11 (c) shows the modified NS-2 response to this

command. Then NS-2 continues to the execution (Figure 4.11 (d)). The new NetViz

streams data with a delay based on the user-defined offset. Then the display shows

the result of the given command (see Figure 4.11(b)). As the queue buffers, the UAV’s

queue begins to spike from the network traffic and starts sending packets to the Tank.

Thus, there is no dropped packet.

The cursor of “queue slider” is dragged to the left to decrease queue size from

5000 to zero at time 1.16525 as shown in Figure 4.12 (a). Figure 4.12 (c) shows that

the command is received and processed by the modified NS-2. Then NS-2 continues

to the execution (Figure 4.12 (d)). As shown in Figure 4.12 (b), UAV continues to

communicate with Tank. As the queue flushes, the packets begin to drop again. When

77

(a) The command tab of the new NetViz user
interface showing the queue size of UAV node
is zero in the circle. UAV communicates
with AWACS and Tanker via receiving pack-
ets. Since the queue size is zero, there is no
communication between UAV and Tanker and
thus, all the packets drop.

(b) The command tab of the new NetViz user
interface showing the queue size is changed
from zero to 5000 at time 0.17612. As the
queue on, UAV begins to spike from the net-
work traffic and starts sending packets to the
Tank. Thus, there is no dropped packet at
time 1.19725.

(c) Command console showing the NS-2 re-
sponse when the queue size is changed from
zero to 5000.

(d) NS-2 continues to normal execution.

Figure 4.11: Snapshots of the command tab of the new NetViz user interface and
command console of NS-2 when increasing queue size of the nodes. The displays
illustrate a real-world scenario for monitoring a military network including AWACS,
Tanker, UAV and Tank nodes.

the spike is gone, the queue size will be zero. Thus, the communication between UAV

and Tanker will go down.

The view tab of the new NetViz user interface is shown in Figure 4.13. The

display at time 3.0020 shows a similar view of the scenario to the initial case in Figure

78

(a) The command tab of the new NetViz user
interface showing the queue size is changed
from 5000 to zero at time 1.16525. While UAV
continues to communicate with Tank, as the
queue down, the packets begin to drop.

(b) The command tab of the new NetViz user
interface showing the queue size is zero again.
The queue length is small. When the spike is
gone, the queue size will be zero and the com-
munication between UAV and Tanker finish
again.

(c) Command console showing the NS-2 re-
sponse when the queue size is changed from
5000 to zero.

(d) NS-2 continues to normal execution.

Figure 4.12: Snapshots of the command tab of the new NetViz user interface and
command console of NS-2 when decreasing queue size of the nodes. The displays
illustrate a real-world scenario for monitoring a military network including AWACS,
Tanker, UAV and Tank nodes.

4.11. But the information regarding Tank node on this tab indicates that the number

of the received packet is 398 which was 0 in the beginning. Without the interaction

with NS-2, there is no way to increase the number of packets of Tank node in a static

79

scenario. This verifies the real-time interaction capability of the new NetViz with the

modified NS-2 using mediator tool.

Figure 4.13: Snapshots of the command tab of the new NetViz user interface displaying
a real-world scenario at time 3.0020 for monitoring a military network including AWACS,
Tanker, UAV and Tank nodes. Information regarding Tank node on this tab indicates
that the number of the received packet is 398 which was 0 in the beginning.

4.3 Comparison to NAM and The Old NetViz Framework

NAM and the old version of NetViz framework operate similarly; process trace

files generated during NS-2 execution, translate the data, and display the information

to a monitor. Our framework has two big differences from NAM and the old version of

NetViz. First, the new NetViz framework provides user interaction with NS-2 using

the mediator tool. The second difference is the way the data presentation of large

network scenarios using visualization functions such as clustering, labeling and color

80

coding. These differences were tested and validated presenting the results in previous

sections. Comparison of the capabilities of our framework to NAM and the old NetViz

framework are discussed in the following sections.

4.3.1 Comparison to NAM. After the NS-2 execution, NAM parses the

trace file (file.nam) built during the execution as discussed in Section 3.2. It can also

be executed directly from a Tcl script. The only user interaction with NAM is limited

to setting up network scenarios. But it does not have the capability to let the user

interact the system while a scenario is running. The new NetViz framework presented

in this research is coupled with the mediator tool and has the capability of rendering

the simulation during the execution. The modified NS-2 executes the Tcl script. The

new NetViz streams the data received from the modified NS-2. As the data is streamed

and the scenario is changed, the received data is added and modified dynamically to

the new NetViz. While the new NetViz has all the interaction capabilities presented

in Section 4.2, NAM has the ability to introduce a static information obtained from

the trace file including the simulation results.

NAM has some user interface capabilities such as fast-forward/rewind, pause,

jump slider as discussed in Section 2.1.2. These capabilities assist the user during

analysis of network events during the visualization. To alter specific visualization

characteristics and simplify the visual presentation NAM does not include any visu-

alization functions. On the other hand, the new NetViz has visualization functions

such as clustering, labeling, color coding which assist in accessing network objects

and events, supporting four tabs consisting of buttons, menus, and sliders.

Figure 4.14 and 4.15 show the user interfaces of the NAM and the new NetViz.

Both visualization softwares visualize JSE scenario and show the network visualization

at time 9.06 seconds. As shown in Figure 4.14, NAM is lack of capabilities discussed

in Section 4.1. The display of NAM does not include visualization functions, filtering,

labeling, color coding. It does not have comprehensive interactive techniques such as

menus, sliders either. Even though there are names refer to the nodes on the display,

81

Figure 4.14: The screenshot of NAM visualizing JSE wired scenario paused at time
9.06.

there is a disorder with these names including unneeded letters. The reason for this,

NAM parses these names from image names, which does not serve to the labeling

function directly. NAM does not use these images to indicate nodes either. Figure

4.15 shows the filters tab of the new NetViz framework including all the nodes in

cluster structures.

Both NAM and the new NetViz provide packet-level animation. NAM can

graphically present information such as throughput and number of packets dropped

at each link and the NetViz provides node statistics such as packet receives, drops,

and receive/drop percentages, when desired node is selected from the pull-down menu

of the view tab. Since our framework similar to the old version of NetViz by the means

of this feature, [5] can provide useful information about it.

4.3.2 Comparison to Old Version of NetViz. The first difference of the

old NetViz framework from our framework is being lack of capability of interacting

82

Figure 4.15: The screenshot of the new NetViz framework visualizing JSE wired
scenario paused at time 9.06. It shows the filters tab on the left hand side and cluster
structures on the right hand side.

with NS-2. The old NetViz framework uses NS-2 trace files (out.nam) obtained from

a completed NS-2 execution to examine network visualization performance. Since

primary classes of the old NetViz framework are kept same, our framework also can

use these trace files. Because we integrated NetViz with the mediator and modified

NS-2 code and established a complete simulation execution in real time, there is no

need to use out.nam file. As modified NS-2 executes the Tcl script, our framework

streams the data received from NS-2. After the data is streamed and the scenario

is changed, the received data is added and modified dynamically to our framework.

As described in Section 3.4, to ensure NS-2 stays ahead of NetViz, we set an offset

time which is 1.1 seconds in the configuration file. The interaction capability of our

framework is tested and validated in Section 4.2.

All the distinct features of our framework described in Section 4.1 also indicate

differences in user interface between our framework and the old NetViz. Figure 4.16

83

and 4.17 show our framework and the old NetViz animating the JSE scenario with

screenshots taken from both visualizations at time 1.06 seconds. The old NetViz lacks

the capability of labeling, filtering, clustering, color coding and selecting nodes (See

Figure 4.16). As mentioned in Section 3.3, a new format of Tcl file was required

for the modified NS-2 code to provide the visualization functions in our framework.

These functions are accomplished by the usage of interactive techniques presented in

Section 4.1 (See Figure 4.17). Thus, these functions enable users to access network

objects and events, supporting four tabs consisting of buttons, menus, and sliders

providing access to variety of network objects for different tasks.

Figure 4.16: The old version of NetViz screenshot visualizing JSE scenario and show-
ing wired packet animation and queuing. It is lack of capability of labeling, filtering,
clustering color coding.

Both the new and old NetViz provide packet-level animation. Thus, users can

access node statistics such as packet receives, drops, and receive/drop percentages us-

ing different interactive techniques in both visualization suites. While the old NetViz

represents this information on the display, the new NetViz framework presents this in-

84

Figure 4.17: The new version of NetViz framework’s visualization of wired packet
traffic visualizing JSE scenario.

formation on the view tab after selecting the desired node from the pull-down menu.

The ability to alter network events at run time takes our framework to a different

level. For instance, in Section 4.2, the number of received packets of Tank node was

increased changing the queue size parameter, as NS-2 executes.

Overall, the old NetViz is capable of handling simple network events and has

shortfalls in dynamic user interactions. On the other hand the new NetViz has the

ability to handle the inherent complexity of large networks, allowing the user to

interact with the current display of the framework and control the network through the

visualization. Therefore, the new NetViz framework including visualization functions

advances network visualization standards interacting with NS-2.

4.4 Test of the Execution Scenarios

This section tests the executions scenarios demonstrated in the Section 3.5.

First execution scenario includes two NetViz clients. Then the number of NetViz

85

clients is increased to six and the second execution scenario is obtained. The NetViz

clients run on different operating system are used in this application. Establishing

the second scenario it’s expected that multiple NetViz clients can be linked to NS-

2 using mediator even if they work on different operating systems. Accomplishing

the interaction between the elements of these scenarios successfully provides users of

NetViz clients with the capability of displaying same simulation and customizing the

display differently in the direction of their needs.

Figure 4.18: Actual picture of the first execution scenario which is composed of NS-
2 running on linux operating system, the mediator, and two NetViz clients running
windows operating system. Both clients display the filters tab. While the client on the
right side has all the clusters on the screen, the cluster 3 has been removed from the
display on the left side.

4.4.1 First Execution Scenario. In Figure 4.18, 4.19, a simulation execution

scenario is built linking two NetViz clients to a modified NS-2 using the mediator tool.

NetViz clients and the mediator tool run on windows machines and modified NS-2

code running on linux machine. This simulation execution scenario is run following

the order of running programs defined Section 3.5.

The mediator tool collects commands from each connected NetViz client and

passes them to NS-2. Then it receives data from NS-2 and duplicates it for each

86

Figure 4.19: Actual picture of the first execution scenario. Both clients display the
view tab. Zoom in is performed to see the cluster 2 in detail on the display of the left
side. And it has larger labels and smaller images. Zooming and panning is performed
to get a close view of the cluster 3. Labels and images are normal sized but packets are
bigger.

NetViz client. This provides users of NetViz with the capability of displaying same

simulation and customizing the display differently in the direction of needs.

Figure 4.18 shows displays of two NetViz clients. Both clients display the filters

tab. The client on the left side has all the clusters on the screen. The user on the right

side deactivates visible check-box for the cluster 3 and removes it from the display.

In figure 4.19, both clients display the view tab. The user on the left side performs

“zoom in” to see the cluster 2 in detail. And he/she also changes the view sizes of

labels and images using the sliders. Thus the display shows larger labels and smaller

images. On the right side, zooming and panning is performed to get a close view of

the cluster 3. The user changes the view sizes of packets. Hence, labels and images

are in normal size but packets are bigger.

4.4.2 Second Execution Scenario. A distributed simulation execution sce-

nario is established adding the previous scenario four more NetViz clients. The sim-

ulation execution scenario is run following the order of running programs defined

87

Section 3.5. All the modifications described in Section 3.3 is done before execution

starts.

Figure 4.20 shows this distributed execution scenario composed of NS-2 running

on linux operating scenario, the mediator and five NetViz clients running on windows

operating scenario and a NetViz client running on Mac operating system. This proves

that multiple NetViz clients running on separate operating systems can be linked to

NS-2. Additionally, as presented in the fist execution scenario each NetViz user has

the capability of customizing the display changing the visualization parameters. In

Figure 4.20 , each NetViz user performed a different feature of NetViz simultaneously.

Figure 4.20: Actual picture of the second execution scenario which is composed of
NS-2 running on linux operating system, the mediator, five NetViz clients running on
windows operating system and one NetViz client running on Mac operating system.

4.5 Challenges in the Design

There was one main challenge in developing NetViz: the visualization library

it uses. Prefuse, is good at displaying static data that is loaded at startup and

88

then visualized. But in the case of NetViz, it does not have that data at startup.

It must stream it from NS-2. To complicate matters further, data is added and

modified dynamically as the trace file is streamed and the scenario changed. This

made development more difficult since prefuse was not designed with such dynamism

in mind. Certain design compromises and decisions in NetViz reflect that difficulty.

Additionally, NS-2 did not originally support some of the properties needed to

display meaningful data such as cluster and force. In order to use those properties,

NS-2 had to be modified to know how to pass those properties from the scenario file

to the output trace file. These modifications required splitting up the node creation

information from one trace line into multiple trace lines. This meant node information

was not received all at once, but was instead received piece by piece. The parser had

to be flexible enough to receive a node’s label in one line and then its cluster a few

lines later.

89

V. Conclusions

This research presents development and implementation of a new NetViz framework

which provides visualization functions and dynamic interactions using the prefuse

tolkit. The user interface of NetViz is effective at helping reveal cluster structures

and visualization functions. The NetViz has also met performance requirements,

allowing exploration of massive networks while supporting real-time interaction and

animation. The interaction with NS-2 is provided by using the mediator tool. The

following sections present contributions, research limits and future work.

5.1 Contributions

5.1.1 User Interface Design. Searching the network event in a large magni-

tude of network topology causes large delays leading to lower quality user interface.

We investigated network interface studies, interactive techniques and the use of net-

work visualization functions to produce a prototype design sticking to the rules of

the Heuristic Evaluation Guidelines. The prototype design eased the implementation

process of the new NetViz framework. The main objective of our user interface de-

sign effort in this research was to build an interface adaptable in the future to handle

extremely large networks.

The prototype design was supported by four tabs (“filters”, “view”, “command”

and “statistics”) consisting of buttons, menus, and sliders providing access to variety

of network objects for different tasks. Task areas were determined as controlling, op-

timizing, changing and analyzing the network. Because this framework builds on the

robust prefuse visualization toolkit we used many options to enhance network visu-

alization layouts based on the prototype design. To give users the ability to perform

the tasks, we facilitated the clustering, filtering, labeling and color coding functions

modifying the NS-2 files such as topo.tcl and ns-namsupp.tcl. These functions reduce

the visual complexity of real world network scenarios visualized.

This research used the prototype design as a guide for the implementation pro-

cess of the new NetViz design. Before constructing the new NetViz framework, this

90

design provided a basis for the standards of interactivity and guided the development

process defining visual style of the user interface. However, the final framework design

has tolerable differences from the prototype design because of the limits of NS-2 and

prefuse toolkit. For instance, while the filters tab includes a hierarchical order and

filters setting table in the prototype design, the new NetViz has a check-box and tree

view including nodes. The reason for this was the Java swing tables were not flexible

enough to provide this capability. The command and statistics tabs are also different

from the prototype design. These differences are discussed in the following sections.

5.1.2 Interaction with NS-2. To provide real-time interaction with NS-2, our

research used the mediator tool developed by Major John Weir [12]. The mediator tool

passes data forth and commands back between NS-2 and the new NetViz framework.

The connection was established enhancing existing NetViz classes to support TCP/IP

connection to be provided by the mediator. With this connection, instead of using a

trace file, the new NetViz run with NS-2 as it executes. Since the new NetViz did

not provide data at start up, the data was streamed from NS-2.

User interface of the new NetViz has controls for starting, pausing and stopping

the visualization. It also provides speed control and seeking to a specific time in the

visualization. Using these controls users can pause, resume or completely stop the

visualization during the execution of NS-2. Currently, among the multiple commands

on the command tab in the prototype design, the only command that works on this

tab is changing “queue size” This research provided full loop simulation executions

including rendering the visualization and providing command feedback to test these

dynamic interactions. Start, pause, resume and change queue size commands tested

and validated visualizing JSE scenario in Chapter IV. It proved that without multiple

iterations or post processing techniques, NetViz users can perform some of purposed

tasks. Thus, with the usage of the mediator, the static NetViz is taken to the next

level bringing the capability of controlling network parameters, as NS-2 executes.

91

5.1.3 Simulation Execution Scenarios Including Multiple Clients. This re-

search built two simulation execution scenarios including multiple NetViz clients.

First execution scenario was included two NetViz clients. Then the number of NetViz

clients was increased to six and the second execution scenario was obtained. The

NetViz clients run on different operating system were used in this application. This

research accomplished the real-time interaction between the elements of these scenar-

ios successfully. Thus, it’s proved that multiple NetViz clients can be linked to NS-2

using mediator tool even if they work on different operating systems. Additionally,

this research obtained the expected results enabling users of NetViz clients to display

same simulation and customize the display differently in the direction of purposed

tasks.

5.2 Research Limits

A number of modifications had to done in some NS-2 script files in this research

because of the limitations of NS-2. The reason for this is that NS-2 does not origi-

nally support some of the properties needed to display such visualization functions as

clustering or color coding. These modifications were discussed in Chapter III. To in-

tegrate the commands discussed in the following section on CCT panel, a modification

is needed in NS-2 code for the future work.

Our implementation is also limited by the restrictions of the java swing. Because

the Java swing tables are not flexible enough to implement filters settings table, we

could not implement this table, as mentioned in Chapter IV. In addition to this, to

implement color coding function for the forces, we had to hard-code blue, gray and

green colors in the NetViz properties file. The reason for this was that there were

force names that need to be matched with the colors to indicate force sides. With

the modification in the NS-2 script file, we had the ability to indicate force sides

using hard-coded colors in a non-flexible way. The other limit was time to complete

command and statistics tab’s functionalities. These tabs are discussed in the following

section.

92

5.3 Future Work

The configurable command tool, CCT, including a number of commands was

created as a part of [12]. Coupling the CCT panel with NetViz to send commands

such as “Turn ON/OFF CBR” , “Change CBR interval”, “Move CBR” , “ Move

Wireless Node” successfully. The future purpose is to integrate these commands

on the command tab of the new NetViz. But, since NetViz does not have enough

information that CCT panel has, integrating these commands requires additional

modifications in NS-2 code in future. Thus, command tab functionality could be

accomplished by the means of advancing the interaction with NS-2.

Currently, the statistic tab functionality is proceeding to analyze the scenario

on the fly. Knowing that graphs are essential in network management and analysis,

this research analyzed a simple wired scenario in detail to obtain 2D and 3D graphs

using nans and tracegraph, post processing tools. Usage of these post processing tools

provided us a useful foresight which would help the progress of NetViz framework

giving a potential to plug these graphs into the user interface. The most important

statistics which can be obtained from the trace files are throughput, end to end delay,

RTT and the graphs of them. To make NetViz capable of calculating these parameters

to analyze and characterize network is a future challenge.

93

Bibliography

1. Andy Hunt and Thomas Hermann, “The importance of interaction in sonifica-
tion,” Proceedings of ICAD 04, Sydney, Australia, Tech. Rep. 1, July 2004.

2. Kevin Fall and Kannan Varadhan, “The ns manual,” UC Berkeley, The VINT
Project, January 2009, http://www.isi.edu/nsnam/ns.pdf, Site accessed January
5, 2009.

3. D. Estrin, M. Handley, J. Heidemann, S. McCanne, Y. Xu, and H. Yu., “Net-
work visualization with the vint network animator nam.” USC Computer Science
Department, Technical Report 99-703b, October 1999.

4. M. Greis, “Tutorial for the network simulator (ns),” VINT group, URL
www.isi.edu/nsnam/ns/tutorial, Site accessed January 5, 2009.

5. J. Mark Belue, Captain, USAF, Network Visualization Design Using Prefuse Vi-
sualization Toolkit. Master’s thesis, Air Force Institute of Technology, March
2008.

6. Theodor Holm Nelson, The Right Way to Think About Software Design, the art of
human computer interface design ed. Reading, MA: Addison-Wesley Publishing
Co, 1990.

7. John M. Lewis, Captain, USAF, Requirements, Design and Prototype of Virtual
User Interface for the AFIT Virtual Spaceplane. Master’s thesis, Air Force
Institute of Technology, December 1997.

8. Jeffrey Heer , “Prefuse,” January 2009, URL http://www.prefuse.org, Site ac-
cessed January 5, 2009.

9. Jeffrey Heer, “Prefuse,” October 2008, URL http://www.infovis-
wiki.net/index.php/Prefuse, Site accessed January 5, 2009.

10. Jaroslaw Malek, “Tracegraph,” October 2007, URL
http://www.tracegraph.com/, Site accessed January 5, 2009.

11. Ankur Jain, “Nans,” URL http://www.geocities.com/ankurjain009/projects.htm,
Site accessed January 5, 2009.

12. John S. Weir, Major, USAF, Mediated User-Simulator Interactive Command with
Visualization (MUSIC-V). Master’s thesis, Air Force Institute of Technology,
March 2009.

13. Aaron Kershenbaum, Keitha Murray, “Visualization of network structures,” Con-
sortium for Computing Sciences in Colleges, December 2005).

14. Enrique Campos-Nanez, “nscript user manual,” Department of System Engineer-
ing University of Virginia, March, 2001, http://home.gwu.edu/ ecamposn/nscrip-
t/nss.pdf, Site accessed January 5, 2009.

94

15. “Model-view-controller (mvc),” eNode company, Markup Language, 2003,
http://www.enode.com/x/markup/tutorial/mvc.html, Site accessed January 5,
2009.

16. Kotilainen Niko, Vapa Mikko, Auvinen Annemari, Weber Matthieu, Vuori Jarkko
, “P2pstudio - monitoring, controlling and visualization tool for peer-to-peer net-
works research,” Department of Mathematical Information Technology University
of Jyvskyl, Finland, Tech. Rep., October 2006.

17. A. Auvinen, M. Vapa, M. Weber, N. Kotilainen, and J. Vuori , “Chedar: Peer-
to-peer middleware,” Proceedings of the 20th IEEE International Parallel and
Distributed Processing Symposium,Rhodes Island, Greece, 2006.

18. Annemari Auvinen, “Chedar p2p platform,” Department of Mathe-
matical Information Technology University of Jyvskyl, Finland, 2003,
http://tisu.it.jyu.fi/cheesefactory, Site accessed January 5, 2009.

19. M. Vapa, N. Kotilainen, A. Auvinen, H. Kainulainen, and J. Vuori, “Resource dis-
covery in p2p networks using evolutionary neural networks,” International Confer-
ence on Advances in Intelligent Systems - Theory and Applications, Luxembourg,
2004.

20. Robert Ball, Glenn A. Fink, Chris North, “Home centric visualization of network
traffic for security administration,” Department of Computer Science Virginia
Polytechnic Institute and State University, Blacksburg, Virginia 2004.

21. Jeffrey Heer, Danah Boyd, “Vizster: Visualizing online social networks,” Com-
puter Science Division University of California, Berkeley, 2004.

22. Prashant Rajvaidya, Kevin C. Almeroth, K Claky, “A scalable architecture for
monitoring and visualizing multicast statistics,” Department of Computer Science
University of California, Santa Barbara April 2000.

23. B. Hukaker, E. Nemeth, and K. Claky, “Otter: A general-purpose network visu-
alization tool,” in INET, (San Jose, California, USA), June 1999.

24. R. Periakaruppan, “Geoplot - a general purpose geographical visualization tool.”
http://www.caida.org/Tools/GeoPlot/.

25. T. Bates, R. Chandra, D. Katz, and Y. Rekhter, “Multipro-tocol extensions for
bgp-4,” Internet Engineering Task Force (IETF), RFC 2283, February 1998.

26. Catherine M. Burns, Johnson Kuo, Sylvia Ng, “Ecological interface design: a new
approach for visualizing network management,” Advanced Interface Design Lab,
Department of Systems Design Engineering, Canada, February 2003.

27. Takayuki Itoh, Hiroki Takakura, Atsushi Sawada, Koji Koyamada, “Hierarchi-
cal visualization of network intrusion detection data,” Published by the IEEE
Computer Society, April 2006.

95

28. Judith E.Terrill, “Scientific visualization,” ITL MCSD Scientific Application and
Visualization Group, http://www.math.nist.gov/mcsd/savg/vis/index.html, Site
accessed January 5, 2009.

29. Andy Hunt, Thomas Hermann, “The importance of interaction in sonification,”
Proceedings of ICAD 04-Tenth Meeting of the International Conference on Audi-
tory Display, Sydney, Australia, July, 2004.

30. Matthias Rauterberg, Usability Engineering. Swiss Federal Institute of Technol-
ogy Zrich, 1996.

31. Ivan Herman, Guy Melanon, M. Scott Marshall, “Graph visualization and navi-
gation in information visualization: a survey,” Centre for Mathematics and Com-
puter Sciences (CWI), Amsterdam, The Netherlands, December 2005).

32. D. Kimelman, B. Leban, T. Roth, and D. Zernik, “Reduction of visual complex-
ity in dynamic graphs,” Proceedings of the Symposium on Graph Drawing 93,
Springer-Verlag, 1994.

33. P. Eades and Q.-W. Feng, “Multilevel visualization of clustered graphs,” Pro-
ceedings of the Symposium on Graph Drawing GD ’96, Springer-Verlag, pp. 101-
112, 1997.

34. G.J. Wills, “Niche works - interactive visualization of very large graphs,” Pro-
ceedings of the Symposium on Graph Drawing GD ’97, Springer-Verlag, pp. 403-
415, 1998.

35. Marcus, Aaron, “Designing graphical user interfaces: Part ii.” UnixWorld, Vol.
7, No 10, October 1990, pp. 135-138.

36. Schneiderman Ben, Plaisant Catherine , Designing The User Interface, 4th ed.
Reading, MA: Pearson Education, 2004.

37. Aliff Umair Salleh, Zulkifli Ishak , Norashidah Md. Din, Md Zaini Jamaludin,
“Trace analyzer for ns-2,” 4th Student Conference on Research and Development,
Shah Alam, Selangor, MALAYSIA, June, 2006.

38. Michael Karl, “A comparison of the architecture of network simulators ns-2 and
tossim,” Performance Simulation of Algorithms and Protocols, Germany, January
2005.

39. Jae Chung and Mark Claypool, “Ns by example,” Worcester Polttechnic Institute,
Computer Science.

96

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704–0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704–0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202–4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection
of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD–MM–YYYY) 2. REPORT TYPE 3. DATES COVERED (From — To)

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

a. REPORT b. ABSTRACT c. THIS PAGE

17. LIMITATION OF
ABSTRACT

18. NUMBER
OF
PAGES

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER (include area code)

Standard Form 298 (Rev. 8–98)
Prescribed by ANSI Std. Z39.18

26–03–2009 Master’s Thesis May 2007 — Mar 2009

DYNAMIC INTERACTIONS FOR NETWORK VISUALIZATION AND
SIMULATION

DACA99–99–C–9999

ENG-09-200

Çiğdem Yetişti, First Lieutenant, TUAF

Air Force Institute of Technology
Graduate School of Engineering and Management (AFIT/EN)
2950 Hobson Way
WPAFB OH 45433-7765

AFIT/GE/ENG/09-50

AFOSR, Complex Network Branch
Mr. Robert Bonneau
Phone Number: (703) 696-9545, rbonneau@gmail.com
875 N. Randolph, Ste.325, Rm. 3112
Arlington Virginia, 22203

AFOSR/CN

Approval for public release; distribution is unlimited.

This research effort examines related interface studies, interactive techniques and visualization functions to present the
design, development and implementation of a new network visualization framework design. From the interface design
perspective, this research presents a prototype design to ease the implementation process. The prototype design is
introduced to attempt to better facilitate using multiple network visualization functions meeting user needs. With the
usage of the mediator tool, the new network visualization framework design interacts with NS-2.The visualization
functions such as clustering, labeling, color coding and selecting nodes help accessing network objects and events,
supporting four tabs consisting of buttons, menus, and sliders. Interactivity and visualization functions empower the
framework to handle the inherent complexity of large networks, allowing the user to interact with the current display of
the framework and control the network through the visualization.

Network, Visualization, Network Simulator, Network Visualization, Visualization Functions, Mediator

U U U UU 96

Lt Col Stuart Kurkowski, PhD

(937) 785–3636, ext 7228 skurkows@afit.edu

